Control System Toolbox™
User's Guide

<4

MATLAB

R2019%a -) MathWorks:

X B

How to Contact MathWorks

Latest news: www .mathworks. com

Sales and services: www.mathworks.com/sales_and_services
User community: www .mathworks.com/matlabcentral
Technical support: www . mathworks.com/support/contact_us
Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Control System Toolbox™ User's Guide
© COPYRIGHT 2001-2019 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government's needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www .mathworks . com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www . mathworks.com/patents for more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History

June 2001

July 2002

June 2004
March 2005
September 2005
March 2006
September 2006
March 2007
September 2007
March 2008
October 2008
March 2009
September 2009
March 2010
September 2010
April 2011
September 2011
March 2012
September 2012
March 2013
September 2013
March 2014
October 2014
March 2015
September 2015
March 2016
September 2016
March 2017
September 2017
March 2018
September 2018
March 2019

Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only

New for Version 5.1 (Release 12.1)
Revised for Version 5.2 (Release 13)
Revised for Version 6.0 (Release 14)
Revised for Version 6.2 (Release 14SP2)
Revised for Version 6.2.1 (Release 14SP3)
Revised for Version 7.0 (Release 2006a)
Revised for Version 7.1 (Release 2006b)
Revised for Version 8.0 (Release 2007a)
Revised for Version 8.0.1 (Release 2007b)
Revised for Version 8.1 (Release 2008a)
Revised for Version 8.2 (Release 2008b)
Revised for Version 8.3 (Release 2009a)
Revised for Version 8.4 (Release 2009b)
Revised for Version 8.5 (Release 2010a)
Revised for Version 9.0 (Release 2010b)
Revised for Version 9.1 (Release 2011a)
Revised for Version 9.2 (Release 2011b)
Revised for Version 9.3 (Release 2012a)
Revised for Version 9.4 (Release 2012b)
Revised for Version 9.5 (Release 2013a)
Revised for Version 9.6 (Release 2013b)
Revised for Version 9.7 (Release 2014a)
Revised for Version 9.8 (Release 2014b)
Revised for Version 9.9 (Release 2015a)
Revised for Version 9.10 (Release 2015b)
Revised for Version 10.0 (Release 2016a)
Revised for Version 10.1 (Release 2016b)
Revised for Version 10.2 (Release 2017a)
Revised for Version 10.3 (Release 2017b)
Revised for Version 10.4 (Release 2018a)
Revised for Version 10.5 (Release 2018b)
Revised for Version 10.6 (Release 2019a)

Contents

Linear System Modeling

Linear System Model Objects

1]

What Are Model Objects? 1-2
Model Objects Represent Linear Systems 1-2
About ModelData 1-2

Control System Modeling with Model Objects 1-4

Types of Model Objects 1-7

Dynamic System Models 1-10

StaticModels 1-12

NumericModels 1-13
Numeric Linear Time Invariant (LTI) Models 1-13
Identified LTI Models 1-14
Identified Nonlinear Models 1-14

Generalized Models 1-16
Generalized and Uncertain LTI Models 1-16
Control DesignBlocks 1-16
Generalized Matrices 1-18

Models with Tunable Coefficients 1-19
Tunable Generalized LTI Models 1-19
Modeling Tunable Components 1-19
Modeling Control Systems with Tunable Components .. 1-20
Internal Structure of Generalized Models 1-20

vi

Contents

Using Model Objects

References

2|

Transfer Functions
Transfer Function Representations
Commands for Creating Transfer Functions
Create Transfer Function Using Numerator and

Denominator Coefficients
Create Transfer Function Model Using Zeros, Poles, and
Gain ...

State-Space Models
State-Space Model Representations
Explicit State-Space Models
Descriptor (Implicit) State-Space Models

Commands for Creating State-Space Models

Create State-Space Model From Matrices

Frequency Response Data (FRD) Models
Frequency ResponseData
Commands for Creating FRD Models
Create Frequency-Response Model from Data

Proportional-Integral-Derivative (PID) Controllers
Continuous-Time PID Controller Representations
Create Continuous-Time Parallel-Form PID Controller . .
Create Continuous-Time Standard-Form PID Controller

Two-Degree-of-Freedom PID Controllers
Continuous-Time 2-DOF PID Controller Representations

Other Model Types in Discrete Time Representations .. 2-23

Discrete-Time Proportional-Integral-Derivative (PID)

Controllers 2-24
Discrete-Time PID Controller Representations 2-24
Create Discrete-Time Standard-Form PID Controller ... 2-26
Discrete-Time 2-DOF PI Controller in Standard Form . . 2-26

MIMO Transfer Functions 2-28
Concatenation of SISO Models 2-28
Using the tf Function with Cell Arrays 2-29

MIMO State-Space Models 2-31
MIMO Explicit State-Space Models 2-31
MIMO Descriptor State-Space Models 2-32
State-Space Model of Jet Transport Aircraft 2-33

MIMO Frequency Response Data Models 2-37

Select Input/Output Pairs in MIMO Models 2-39

Time Delays in Linear Systems 2-40
First Order Plus Dead Time Model 2-40
Input and Output Delay in State-Space Model 2-41
Transport Delay in MIMO Transfer Function 2-42
Discrete-Time Transfer Function with Time Delay 2-43

Closing Feedback Loops with Time Delays 2-45

Time-Delay Approximation 2-48
Time-Delay Approximation in Discrete-Time Models . . . 2-48

Time-Delay Approximation in Continuous-Time Open-Loop
Model 2-50

Time-Delay Approximation in Continuous-Time Closed-
LoopModel, 2-55

Approximate Different Delays with Different
Approximation Orders 2-60

Convert Time Delay in Discrete-Time Model to Factors of
Lz . 2-64

viii

Contents

Frequency Response Data (FRD) Model with Time Delay

Internal Delays
Why Internal Delays Are Necessary
Behavior of Models With Internal Delays
Inside Time Delay Models
Functions That Support Internal Time Delays
Functions That Do Not Support Internal Time Delays . .
References i,

Tunable Low-Pass Filter
Create Tunable Second-Order Filter

Create State-Space Model with Both Fixed and Tunable
Parameters i

Control System with Tunable Components
Control System with Multichannel Analysis Points

Mark Signals of Interest for Control System Analysis and
Design e
AnalysisPoints
Specify Analysis Points for MATLAB Models
Specify Analysis Points for Simulink Models
Refer to Analysis Points for Analysis and Tuning

Model Arraysc i,
What Are Model Arrays?,
Uses of Model Arrays,
Visualizing Model Arrays
Visualizing Selection of Models From Model Arrays . .

Select Models from Array
Query Array Size and Characteristics
Linear Parameter-Varying Models

What are Linear Parameter-Varying Models?
Regular vs. Irregular Grids

2-69

2-73
2-73
2-74
2-75
2-76
2-76
2-77

2-78

2-80

2-82

2-84

2-86

2-90
2-90
2-91
2-92

2-101
2-101
2-101
2-102
2-103

2-105
2-108
2-111

2-111
2-113

Use Model Arrays to Create Linear Parameter-Varying

Models 2-116
Approximate Nonlinear Systems using LPV Models ... 2-117
Applications of Linear Parameter-Varying Models 2-118

Using LTT Arrays for Simulating Multi-Mode Dynamics

Working with Linear Models

Data Manipulation

3|

Store and Retrieve ModelData
Model Properties
Specify Model Properties at Model Creation
Examine and Change Properties of an Existing Model . . .

Extract Model Coefficients 3-6
Functions for Extracting Model Coefficients 3-6
Extracting Coefficients of Different Model Type 3-6
Extract Numeric Model Data and Time Delay 3-6
Extract PID Gains from Transfer Function 3-8

Attach MetadatatoModels 3-9
Specify Model Time Units 3-9
Interconnect Models with Different Time Units 3-9
Specify Frequency Units of Frequency-Response Data

Model 3-10
Extract Subsystems of Multi-Input, Multi-Output (MIMO)

Models 3-10
Specify and Select Input and Output Groups 3-11

Query Model Characteristics 3-14

Customize Model Display 3-17
Configure Transfer Function Display Variable 3-17

ix

X

Contents

Configure Display Format of Transfer Function in
Factorized Form

Model Interconnections

4

Why Interconnect Models?

Catalog of Model Interconnections
Model Interconnection Commands

Arithmetic Operations
Numeric Model of SISO FeedbackLoop

Control System Model With Both Numeric and Tunable

Components

Multi-Loop Control System
Mark Analysis Points in Closed-Loop Models
MIMO Control System
MIMO FeedbackLoop

How the Software Determines Properties of Connected
Models

Rules That Determine Model Type

Recommended Model Type for Building Block Diagrams

4-13

4-18

4-21

4-26

4-28

4-30

Model Transformation

S|

Conversion Between Model Types 5-2
Explicit Conversion Between Model Types 5-2
Automatic Conversion Between Model Types 5-2
Recommended Working Representation 5-3

Convert From One Model Type to Another 5-4

Get Current Value of Generalized Model by Model
Conversion 5-6

Decompose a 2-DOF PID Controller into SISO Components

... 5-8
Discretize a Compensator 5-13
Improve Accuracy of Discretized System with Time Delay

.. 5-19
Convert Discrete-Time System to Continuous Time 5-23
Continuous-Discrete Conversion Methods 5-26

Choosing a Conversion Method 5-26
Zero-OrderHold 5-27
First-OrderHold 5-28
Impulse-Invariant Mapping 5-29
Tustin Approximation 5-30
Zero-Pole Matching Equivalents 5-34
LeastSquares 5-34
Upsample Discrete-Time System 5-36
Choosing a Resampling Command 5-40

xi

xii

Model Simplification

6/

Model Reduction Basics 6-2
When to Reduce Model Order 6-2
Choosing a Model Reduction Method 6-4

Reduce Model Order Using the Model Reducer App 6-6
Balanced Truncation Model Reduction 6-17
Balanced Truncation in the Model Reducer App 6-17
Approximate Model by Balanced Truncation at the
CommandLine 6-26
Compare Truncated and DC Matched Low-Order Model
Approximations, 6-30
Approximate Model with Unstable or Near-Unstable Pole
.. 6-35
Frequency-Limited Balanced Truncation 6-40
Pole-Zero Simplification 6-47
Pole-Zero Simplification in the Model Reducer App 6-47
Pole-Zero Cancellation at the Command Line 6-53
Mode-Selection Model Reduction 6-57
Mode Selection in the Model Reducer App 6-57
Mode Selection at the Command Line 6-63
Visualize Reduced-Order Models in the Model Reducer
ADD . . e 6-67
ErrorPlots 6-67
Response Plots 6-68
Plot Characteristics 6-70
PlotTools 6-72

Contents

Linear Analysis

Time Domain Analysis

7

Plotting System Responses 7-2
Time-Domain Responses 7-20
Time-Domain Response Dataand Plots 7-21
Time-Domain Characteristics on Response Plots 7-24

Numeric Values of Time-Domain System Characteristics

.. 7-29
Time-Domain Responses of Discrete-Time Model 7-31
Time-Domain Responses of MIMO Model 7-34
Time-Domain Responses of Multiple Models 7-36
Joint Time-Domain and Frequency-Domain Analysis ... 7-40
Response from Initial Conditions 7-45
Import LTI Model Objects into Simulink 7-48

Simulate LTT Model in Simulink 7-48

Import MIMO LTI Model into Simulink 7-50

Analysis of Systems with Time Delays 7-53
Considerations to Keep in Mind when Analyzing Systems

with Internal Time Delays 7-56

xiii

xiv

Contents

Frequency Domain Analysis

8|

Frequency-Domain Responses 8-2
Frequency Response of a SISO System 8-4
Frequency Response of a MIMO System 8-6
Frequency-Domain Characteristics on Response Plots . 8-10

Numeric Values of Frequency-Domain Characteristics of

SISOModel 8-13
Pole and Zero Locations 8-16
Assessing Gain and Phase Margins 8-19
Analyzing Control Systems with Delays 8-32
Analyzing the Response of an RLC Circuit 8-50

Sensitivity Analysis

9

Model Array with Single Parameter Variation 9-2
Model Array with Variations in Two Parameters 9-6

Study Parameter Variation by Sampling Tunable Model

Passivity and Conic Sectors

10|

About Passivity and Passivity Indices 10-2
About Sector Bounds and Sector Indices 10-8
PassivityIndices 10-18
Parallel Interconnection of Passive Systems 10-23
Series Interconnection of Passive Systems 10-26
Feedback Interconnection of Passive Systems 10-30

Control Design

PID Controller Design

11|

PID Controller Design at the Command Line 11-2
Designing Cascade Control System with PI Controllers
... 11-10
Tune 2-DOF PID Controller (Command Line) 11-16
Tune 2-DOF PID Controller (PID Tuner) 11-22
PID Controller Types for Tuning 11-32
Specifying PID Controller Type 11-32
1-DOF Controllers 11-34
2-DOF Controllers 11-34
2-DOF Controllers with Fixed Setpoint Weights 11-36
PID Controller Tuning in Simulink 11-40

xvi

Contents

Design PID Controller Using Estimated Frequency

Response i 11-49
Design Family of PID Controllers for Multiple Operating

Points 11-59
Design PID Controller Using Simulated I/O Data 11-68

Classical Control Design

12

Choosing a Control Design Approach 12-2
Control System Designer Tuning Methods 12-4
Graphical Tuning Methods 12-4
Automated Tuning Methods 12-5
Effective Plant for Tuning 12-6
Select a Tuning Method 12-7
Design Requirements 12-9
Add Design Requirements 12-10
Edit Design Requirements 12-13
Root Locus and Pole-Zero Plot Requirements 12-14
Open-Loop and Closed-Loop Bode Diagram Requirements
....................................... 12-16
Open-Loop Nichols Plot Requirements 12-17
Step and Impulse Response Requirements 12-18
Feedback Control Architectures 12-21
Design Multiloop Control System 12-24
Multimodel Control Design 12-35
Control Design Overview 12-35
Model Atrayso oot 12-35
Nominal Model 12-37
Frequency Grid 12-39
Design Controller for Multiple Plant Models 12-40

Bode Diagram Design 12-49
Tune Compensator For DC Motor Using Bode Diagram

Graphical Tuning, 12-49
Root Locus Design 12-64
Tune Electrohydraulic Servomechanism Using Root Locus
Graphical Tuning, 12-64
Nichols PlotDesign 12-80
Tune Compensator For DC Motor Using Nichols Plot
Graphical Design 12-80
Edit Compensator Dynamics 12-93
Compensator Editor 12-93
Graphical Compensator Editing 12-96
Polesand Zerosc.iiiiii 12-97
Lead and Lag Networks 12-97
Notch Filters 12-98
Design Compensator Using Automated Tuning Methods
.. 12-100
Select Tuning Method 12-100
Select Compensator and Loopto Tune 12-101
PIDTuningccoviiiniiinn... 12-102
Optimization-Based Tuning 12-108
LQGSynthesis 12-110
LoopShaping 12-112
Internal Model Control Tuning 12-112
Analyze Designs Using Response Plots 12-116
AnalysisPlots 12-116
EditorPlots 12-119
Plot Characteristics 12-120
PlotTools, 12-121
Design Requirements 12-123
Compare Performance of Multiple Designs 12-126
Design Hard-Disk Read/Write Head Controller 12-132
Design Compensator for Plant Model with Time Delays
.. 12-146

xvii

xviii

Contents

Design Compensator for Systems Represented by
Frequency Response Data 12-154

Design Internal Model Controller for Chemical Reactor
Plant 12-160

Design LQG Tracker Using Control System Designer 12-175

Export Design to MATLAB Workspace 12-187
Generate Simulink Model for Control Architecture .. 12-190
Tune Simulink Blocks Using Compensator Editor . . . 12-192

Single Loop Feedback/Prefilter Compensator Design 12-200
Cascaded Multiloop Feedback Design 12-210

Reference Tracking of DC Motor with Parameter
Variations 12-221

State-Space Control Design

13|

Extended and Unscented Kalman Filter Algorithms for

Online State Estimation 13-2
Extended Kalman Filter Algorithm 13-2
Unscented Kalman Filter Algorithm 13-5

Generate Code for Online State Estimation in MATLAB
... 13-11
Tunable and Nontunable Object Properties 13-13

Validate Online State Estimation at the Command Line
... 13-15
Examine Output Estimation Error 13-15
Examine State Estimation Error for Simulated Data . . 13-16
Validate Online State Estimation in Simulink 13-18
Examine Residuals 13-18

Examine State Estimation Error for Simulated Data . . 13-19
Compute Residuals and State Estimation Errors 13-19

Troubleshoot Online State Estimation 13-22

Nonlinear State Estimation Using Unscented Kalman
Filter and Particle Filter 13-24

Estimate States of Nonlinear System with Multiple,
Multirate Sensors 13-45

Regulate Pressure in Drum Boiler 13-59

Control System Tuning

Control System Tuning

14

Automated Tuning Overview 14-3
Choosing an Automated Tuning Approach 14-5
Automated Tuning Workflow 14-7
Specify Control Architecture in Control System Tuner
.. 14-9
About Control Architecture 14-9
Predefined Feedback Architecture 14-9
Arbitrary Feedback Control Architecture 14-11
Control System Architecture in Simulink 14-12
Open Control System Tuner for Tuning Simulink Model
... 14-13
Command-Line Equivalents 14-14

Xix

XX

Contents

Specify Operating Points for Tuning in Control System

Tuner

About Operating Points in Control System Tuner
Linearize at Simulation Snapshot Times

Compute Operating Points at Simulation Snapshot Times

View and Change Block Parameterization in Control

System Tuner

View Block Parameterization
Fix Parameter Values or Limit Tuning Range
Custom Parameterization
Block Rate Conversion

Setup for Tuning Control System Modeled in MATLAB

How Tuned Simulink Blocks Are Parameterized
Blocks With Predefined Parameterization
Blocks Without Predefined Parameterization
View and Change Block Parameterization

Specify Goals for Interactive Tuning

Quick Loop Tuning of Feedback Loops in Control System
Tuner

Quick Loop Tuning . .

Purpose

Description

Feedback Loop Selection

Desired Goals . . .
Options

Algorithms

Step Tracking Goal . .

Purpose

Description

Step Response Selection

Desired Response

14-15
14-15
14-15

14-17
14-21

14-24

14-26
14-26
14-28
14-30
14-31

14-35
14-36
14-36
14-37
14-38

14-39

Options o e
Algorithms

Step RejectionGoal
Purpose
Description i
Step Disturbance Response Selection
Desired Response to Step Disturbance
Options o e
Algorithms

TransientGoal
Purpose e
Description i,
Response Selection
Initial Signal Selection
Desired Transient Response
Options

Tips

Algorithms

LOR/LQG Goal
Purpose e
Description i
Signal Selection
LQG Objectiveo
Options i e

Tips

Algorithms

GainGoal
Purpose
Description
I/O Transfer Selection
Options
Algorithms

Variance Goal
Purpose
Descriptionc.o i
I/O Transfer Selection
OptionSt e

Tips

14-65
14-66

14-68
14-68
14-68
14-69
14-70
14-71
14-72

14-74
14-74
14-74
14-75
14-76
14-76
14-77
14-78
14-79

14-80
14-80
14-80
14-81
14-81
14-82
14-83
14-83

14-85
14-85
14-85
14-86
14-87
14-89

14-91
14-91
14-91
14-91
14-92
14-93

xxi

xxii

Contents

Algorithms

Reference Tracking Goal

Purpose

Description i
Response Selection
Tracking Performance

Options

Algorithms,

OvershootGoal

Purpose

Description i
Response Selection

Options

Algorithms

Disturbance
Purpose

RejectionGoal

Description i
Disturbance Scenario
Rejection Performance

Options

Algorithms

SensitivityGoal

Purpose

Description i
Sensitivity Evaluation
SensitivityBound

Options

Algorithms

Weighted GainGoal

Purpose

Descriptionciiiininnn.
I/O Transfer Selection

Weights
Options

Algorithms

Weighted Variance Goal

Purpose

14-94

14-96
14-96
14-96
14-97
14-98
14-99
14-101

14-103
14-103
14-103
14-104
14-105
14-106

14-108
14-108
14-108
14-109
14-110
14-111
14-111

14-113
14-113
14-113
14-114
14-115
14-115
14-116

14-118
14-118
14-118
14-118
14-119
14-120
14-121

14-123
14-123

Description
I/O Transfer Selection
Weights
Options
Tips ...
Algorithms

Minimum Loop Gain Goal
Purpose
Description

Open-Loop Response Selection

Desired Loop Gain . . .
Options
Algorithms

Maximum Loop Gain Goal
Purpose
Description

Open-Loop Response Selection

Desired Loop Gain . . .
Options
Algorithms

Loop Shape Goal
Purpose
Description

Open-Loop Response Selection

Desired Loop Shape ..
Options
Algorithms

Margins Goal
Purpose
Description

Feedback Loop Selection
Desired Marginsc.ccoiniiiinnn...

Options
Algorithms

PassivityGoal

Purpose
Description
I/0O Transfer Selection

14-123
14-123
14-124
14-125
14-126
14-126

14-128
14-128
14-128
14-130
14-131
14-131
14-132

14-134
14-134
14-134
14-136
14-137
14-137
14-138

14-140
14-140
14-140
14-142
14-143
14-143
14-145

14-147
14-147
14-147
14-148
14-149
14-149
14-150

14-152
14-152
14-152
14-153

xxiii

xxiv

Contents

Options
Algorithms

Conic SectorGoal
Purpose
Description
I/O Transfer Selection
Options
TipS oo
Algorithms

Weighted PassivityGoal
Purpose
Description
I/O Transfer Selection
Weights
Options
Algorithms

PolesGoal
Purpose
Description
Feedback Configuration
Pole Location
Options
Algorithms

Controller Poles Goal
Purpose
Description
Constrain Dynamics of Tuned Block . . .
Keep Poles Inside the Following Region
Algorithms

Manage Tuning Goals

Generate MATLAB Code from Control System Tuner for

Command-Line Tuning

Interpret Numeric Tuning Results

Tuning-Goal Scalar Values
Tuning Results at the Command Line . .
Tuning Results in Control System Tuner

14-154
14-155

14-157
14-157
14-157
14-158
14-159
14-160
14-161

14-163
14-163
14-163
14-164
14-165
14-166
14-167

14-169
14-169
14-169
14-170
14-171
14-172
14-172

14-174
14-174
14-174
14-175
14-175
14-176

14-177

14-179

14-182
14-182
14-183
14-183

Improve Tuning Results 14-185

Visualize Tuning Goals 14-187
Tuning-Goal Plots 14-187
Difference Between Dashed Line and Shaded Region 14-189
Improve Tuning Results 14-195

Create Response Plots in Control System Tuner 14-196

Examine Tuned Controller Parameters in Control System

Tuner 14-203
Compare Performance of Multiple Tuned Controllers
.. 14-205
Create and Configure slTuner Interface to Simulink Model
.. 14-210
Stability Margins in Control System Tuning 14-216
Gain and Phase Margins 14-217
Combined Gain and Phase Variations 14-217
Interpreting the Gain and Phase Margin Plot 14-218
Algorithm, 14-220
Tune Control System at the Command Line 14-221
Speed Up Tuning with Parallel Computing Toolbox
Software 14-223
Validate Tuned Control System 14-225
Extract and Plot System Responses 14-225
Validate Design in Simulink Model 14-228
Extract Responses from Tuned MATLAB Model at the
Command Line 14-230

xxvi

Contents

Loop-Shaping Design

15|

Structure of Control System for Tuning With looptune

.. 15-2
Set Up Your Control System for Tuning with looptune
 Set Up Your Control System for looptunein MATLAB . . . 154
Set Up Your Control System for looptune in Simulink . . 15-4
Tune MIMO Control System for Specified Bandwidth . . 15-6
Tuning Feedback Loops with LOOPTUNE 15-13
Decoupling Controller for a Distillation Column 15-19
Tuning of a Digital Motion Control System 15-31

Gain-Scheduled Controllers

16|

Gain Scheduling Basics 16-2
Gain Scheduling in Simulink 16-2
Tune Gain Schedules 16-3

Model Gain-Scheduled Control Systems in Simulink ... 16-4
Model Scheduled Gains 16-4
Gain-Scheduled Equivalents for Commonly Used Control

Elements 16-7
Custom Gain-Scheduled Control Structures 16-12
Tunability of Gain Schedules 16-13

Tune Gain Schedules in Simulink 16-15
Workflow for Tuning Gain Schedules 16-15

Plant Models for Gain-Scheduled Controller Tuning . . 16-18
Obtaining the Family of Linear Models 16-19

Set Up for Gain Scheduling by Linearizing at Design Points

....................................... 16-20
Sample System at Simulation Snapshots 16-23
Sample System at Varying Parameter Values 16-23
Eliminate Samples at Unneeded Design Points 16-24
LPVPlantsin MATLAB 16-25
Multiple Design Points in slTuner Interface 16-26
Block Substitution for Plant 16-26
Multiple Block Substitutions 16-26
Substituting Blocks that Depend on the Scheduling
Variables 16-28
Resolving Mismatches Between a Block and its
Substitution 16-29
Block Substitution for LPV Blocks 16-30
Parameterize Gain Schedules 16-32
Basis Function Parameterization 16-32
Tunable Gain Surfaces 16-35
Tunable Gain With Two Independent Scheduling Variables
....................................... 16-36
Tunable Surfaces in Simulink 16-38
Tunable Surfacesin MATLAB 16-40
Change Requirements with Operating Condition 16-42
Define Variable Tuning Goal 16-42
Enforce Tuning Goal at Subset of Design Points 16-44
Exclude Design Points from systune Run 16-45
Validate Gain-Scheduled Control Systems 16-46
Examine Tuned Gain Surfaces 16-46
Visualize Tuning Goals 16-46
Check Linear Performance 16-49
Validate Gain Schedules in Nonlinear System 16-50
Gain-Scheduled Control of a Chemical Reactor 16-52
Tuning of Gain-Scheduled Three-Loop Autopilot 16-70
Trimming and Linearization of the HL-20 Airframe ... 16-86
Angular Rate Control in the HL-20 Autopilot 16-95

xxvii

xxviii

Contents

Attitude Control in the HL-20 Autopilot - SISO Design

.. 16-104
Attitude Control in the HL-20 Autopilot - MIMO Design

.. 16-116
MATLAB Workflow for Tuning the HL-20 Autopilot .. 16-127

Control System Tuning Examples - Generalized

17|

LTI Models
Tuning Control Systems with SYSTUNE 17-2
Building Tunable Models 17-10
Active Vibration Control in Three-Story Building 17-18
Vibration Control in Flexible Beam 17-31
Passive Control with Communication Delays 17-44

Control System Tuning Examples

18|

Tuning Multiloop Control Systems 18-2
PID Tuning for Setpoint Tracking vs. Disturbance

Rejection 18-13
Time-Domain Specifications 18-25
Frequency-Domain Specifications 18-31
Loop Shape and Stability Margin Specifications 18-42

System Dynamics Specifications 18-49

Configuring Design Requirements 18-52
Validating Results 18-54
Tune Control Systems in Simulink 18-63
Tune a Control System Using Control System Tuner . . 18-73
Using Parallel Computing to Accelerate Tuning 18-94
Control of a Linear Electric Actuator 18-99

Control of a Linear Electric Actuator Using Control

SystemTuner 18-109
Multi-Loop PI Control of a Robotic Arm 18-141
Control of an Inverted Pendulumona Cart 18-163
Digital Control of Power Stage Voltage 18-173
MIMO Control of Diesel Engine 18-184
Tuning of a Two-Loop Autopilot 18-199
Multiloop Control of a Helicopter 18-217
Fixed-Structure Autopilot for a Passenger Jet 18-226
Fault-Tolerant Control of a Passenger Jet 18-240
Passive Control of Water Tank Level 18-251
Tuning for Multiple Values of Plant Parameters 18-270

xxix

XXX

Customization

Contents

19

Preliminaries
Terminology 19-2
Property and Preferences Hierarchy 19-3
Ways to Customize Plots 19-5

20

Toolbox Preferences Editor 20-2
Overview of the Toolbox Preferences Editor 20-2
Opening the Toolbox Preferences Editor 20-2
UnitsPane 20-3
StylePane 20-5
OptionsPane 20-6
Control System Designer Pane 20-7

Setting Tool Preferences

21

Linear System Analyzer Preferences Editor 21-2
Opening the Linear System Analyzer Preference Editor
.. 21-2
UnitsPane i 21-3
StylePane, 21-5
OptionsPane 21-6
ParametersPane 21-7

22

Customizing Response Plot Properties

Customize Response Plots Using the Response Plots
Property Editor

Opening the Property Editor
Overview of Response Plots Property Editor
LabelsPane
LimitsPane
UnitsPane i
StylePane
OptionsPane,
Editing Subplots Using the Property Editor

Customizing Response Plots Using Plot Tools

Properties You Can Customize Using Plot Tools
Opening and Working with Plot Tools
Example of Changing Line Color Using Plot Tools

Customizing Response Plots from the Command Line

Obtaining Plot Handles
Obtaining Plot Options Handles
Examples of Customizing Plots from the Command Line

Build GUI With Interactive Response-Plot Updates . . .

22-2
22-2
22-3
22-5
22-6
22-6
22-16
22-18
22-22

22-24
22-24
22-24
22-25

22-28
22-28
22-31
22-32

22-34
22-38

22-53

Design Case Studies

23|

Design Yaw Damper for Jet Transport
Overview of this Case Study
CreatingtheJetModel
Computing Open-Loop Poles
Open-Loop Analysisiiiiiin....
Root Locus Design,

xxxi

xxxii

Washout Filter Design 23-13

LQG Regulation: Rolling Mill Case Study 23-19
Overview of thisCase Study 23-19
Process and Disturbance Models 23-19
LQG Design forthe x-Axis 23-22
LQG Design forthe y-Axis 23-28
Cross-Coupling Between Axes 23-30
MIMOLQGDeSignoviii it 23-33

Kalman Filtering 23-37

Reliable Computations

24

Scaling State-Space Models 24-2
Why Scaling IsImportant 24-2
When to Scale Your Model 24-2
Manually Scale Your Model 24-3

25

Linear System Analyzer Overview 25-2

Using the Right-Click Menu in the Linear System Analyzer

.. 25-4
Overview of the Right-Click Menu 25-4
Setting Characteristics of Response Plots 25-4

Importing, Exporting, and Deleting Models in the Linear
System Analyzer 25-9
Importing Models i 25-9
ExportingModels 25-10
DeletingModels i 25-10

Contents

Selecting Response Types 25-12

Methods for Selecting Response Types 25-12
Right Click Menu: Plot Type 25-12
Plot Configurations Window 25-12
Line Styles Editor 25-14
Analyzing MIMO Models 25-17
Overview of Analyzing MIMO Models 25-17
Array Selector 25-18
I/O Grouping for MIMO Models 25-19
Selecting I/OPairs 25-20
Customizing the Linear System Analyzer 25-22
Overview of Customizing the Linear System Analyzer 25-22
Linear System Analyzer Preferences Editor 25-22

xxxiii

Linear System Modeling

35

Linear System Model Objects

* “What Are Model Objects?” on page 1-2

* “Control System Modeling with Model Objects” on page 1-4
* “Types of Model Objects” on page 1-7

* “Dynamic System Models” on page 1-10

» “Static Models” on page 1-12

* “Numeric Models” on page 1-13

* “Generalized Models” on page 1-16

* “Models with Tunable Coefficients” on page 1-19

* “Using Model Objects” on page 1-23

+ “References” on page 1-24

1 Linear System Model Objects

What Are Model Objects?

1-2

Model Objects Represent Linear Systems

In Control System Toolbox, System Identification Toolbox™, and Robust Control Toolbox™
software, you represent linear systems as model objects. In System Identification Toolbox,
you also represent nonlinear models as model objects. Model objects are specialized data
containers that encapsulate model data and other attributes in a structured way. Model
objects allow you to manipulate linear systems as single entities rather than keeping
track of multiple data vectors, matrices, or cell arrays.

Model objects can represent single-input, single-output (SISO) systems or multiple-input,
multiple-output (MIMO) systems. You can represent both continuous- and discrete-time
linear systems.

The main families of model objects are:

* Numeric Models — Basic representation of linear systems with fixed numerical
coefficients. This family also includes identified models that have coefficients
estimated with System Identification Toolbox software.

* Generalized Models — Representations that combine numeric coefficients with
tunable or uncertain coefficients. Generalized models support tasks such as parameter
studies or compensator tuning.

About Model Data

The data encapsulated in your model object depends on the model type you use. For
example:
* Transfer functions store the numerator and denominator coefficients

* State-space models store the A, B, C, and D matrices that describe the dynamics of the
system

* PID controller models store the proportional, integral, and derivative gains
Other model attributes stored as model data include time units, names for the model

inputs or outputs, and time delays. For more information about setting and retrieving
model attributes, see “Model Attributes”.

See Also

Note All model objects are MATLAB® objects, but working with them does not require a
background in object-oriented programming. To learn more about objects and object
syntax, see “Role of Classes in MATLAB” (MATLAB).

See Also

More About

. “Control System Modeling with Model Objects” on page 1-4
. “Types of Model Objects” on page 1-7

1-3

1 Linear System Model Objects

Control System Modeling with Model Objects

1-4

Model objects can represent individual components of a control architecture, such as the
plant, actuators, sensors, or controllers. You can connect model objects to build aggregate
models of block diagrams that represent the combined response of multiple elements.

For example, the following control system contains a prefilter F, a plant G, and a
controller C, arranged in a single-loop configuration. The model also includes a
representation of sensor dynamics, S.

+

r— F(s) Cis) Gis) =y

[

5(s)

You can represent each of the components as a model object. You do not need to use the
same type of model object for each component. For example, represent the plant G as a
zero-pole-gain (zpk) model with a double pole at s = -1; C as a PID controller, and F and
S as transfer functions:

G = zpk([],[-1,-1],1);
C = pid(2,1.3,0.3,0.5);
S = tf(5,[1 4]);
F=1tf(1,[1 1]);

You can then combine these elements build models that represent your control system or
the control system as a whole. For example, create the open-loop response SGC:

open_loop = S*G*C;
To build a model of the unfiltered closed-loop response, use the feedback command:
T = feedback(G*C,S);

To model the entire closed-loop system response from r to y, combine T with the filter
transfer function:

Try = T*F;

Control System Modeling with Model Objects

The results open_loop, T, and Try are also linear model objects. You can operate on
them with Control System Toolbox™ control design and analysis commands. For example,

plot the step response of the entire system:

stepplot(Try)
Step Response
[r T T T T T T T T T
,.f/ \\ o
0.8 Froerere o I T —— s]
/ —
0.7 [/ 1
I|II
In'
0.6 fr' 1
@ [
] E B F -
2 .
a /
E 04l f 1
<L /
0.2 r)I} T
In'
!
01 f .
/!
-"/r i i i i i i i i i
2 3 4 5 G 7 S 9 0
Time (seconds)

—

When you combine Numeric LTI models, the resulting Numeric LTI model represents the

aggregate system. The resulting model does not retain the original data from the
combined components. For example, T does not separately keep track of the dynamics of

the components G, C, and S that are combined to create T.
1-5

1 Linear System Model Objects

1-6

See Also
feedback

Related Examples

. “Numeric Model of SISO Feedback Loop” on page 4-6
. “Multi-Loop Control System” on page 4-10
. “MIMO Control System” on page 4-18

More About
. “Types of Model Objects” on page 1-7

Types of Model Objects

Types of Model Objects

The following diagram illustrates the relationships between the types of model objects in
Control System Toolbox, Robust Control Toolbox, and System Identification Toolbox
software. Model types that begin with id require System Identification Toolbox software.

Model types that begin with u require Robust Control Toolbox software. All other model
types are available with Control System Toolbox software.

1-7

Linear System Model Objects

GENERALIZED MODELS

Control Design Blocks

NUMERIC MODELS

Numeric
LTI Models

tf pid
zpk pidstd
sS pid2
frd pidstd2

Identified
LTI Models

idfrd
idpoly
idproc

idgrey
idtf
idss

Identified
MNonlinear Models

idnlarx
idnlgrey
idnlhw

Dynamic Control
Design Blocks

Tunable
tunableTF
tunableSs

tunableGain
tunablePID
tunablePID2

Uncertain
ultidyn
udyn

Analysis Point Block
AnalysisPoint

Generalized
LTI Models

Tunable and/or Uncertain
genss
genfrd

Uncertain Only
uss
ufrd

DYNAMIC SYSTEM MODELS

e e e 3

Static Control
Design Blocks

Tunable
realp

Uncertain
ureal
ucomplex
ucomplexm

Generalized
Matrices

Tunable
genmat

Uncertain
umat

The diagram illustrates the following two overlapping broad classifications of model

object types:

See Also

* Dynamic System Models vs. Static Models — In general, Dynamic System Models
represent systems that have internal dynamics, while Static Models represent static
input/output relationships.

* Numeric Models vs. Generalized Models — Numeric Models are the basic numeric
representation of linear systems with fixed coefficients. Generalized Models represent
systems with tunable or uncertain components.

See Also

More About

. “What Are Model Objects?” on page 1-2
. “Dynamic System Models” on page 1-10
. “Static Models” on page 1-12

. “Numeric Models” on page 1-13

. “Generalized Models” on page 1-16

1-9

1 Linear System Model Objects

Dynamic System Models

Dynamic System Models generally represent systems that have internal dynamics or
memory of past states such as integrators, delays, transfer functions, and state-space
models.

Most commands for analyzing linear systems, such as bode, margin, and
linearSystemAnalyzer, work on most Dynamic System Model objects. For Generalized
Models, analysis commands use the current value of tunable parameters and the nominal
value of uncertain parameters. Commands that generate response plots display random
samples of uncertain models.

The following table lists the Dynamic System Models.

Model Family Model Types

Numeric LTI models — Basic numeric tf

representation of linear systems 2pk

(requires Control System Toolbox)
SS

frd

pid

pidstd

pid2

pidstd2

Identified LTT models — Representations of |idtf

linear systems with tunable coefficients,

id
whose values can be identified using l >3
measured input/output data. idfrd
(requires System Identification Toolbox) idgrey

idpoly

idproc
Identified nonlinear models — idnlarx

Representations of nonlinear systems with [

- idnlhw
tunable coefficients, whose values can be
identified using input/output data. Limited

1-10

See Also

Model Family Model Types

support for commands that analyze linear |idnlgrey

systems.

(requires System Identification Toolbox)

Generalized LTI models — Representations |[genss

of sygtgms that include tunable or uncertain genfrd

coefficients

(tunable models require Control System uss

Toolbox; uncertain models require Robust |yfrd

Control Toolbox)

Dynamic Control Design Blocks — Tunable, [tunableGain

uncertain., or switch analysis points for tunableTF

constructing models of control systems

(tunable Control Design Blocks and analysis | tunabless

points require Control System Toolbox; tunablePID

uncertain Control Design Blocks require

Robust Control Toolbox) SUmEDLEF
ultidyn
udyn
AnalysisPoint

See Also

More About

. “Numeric Linear Time Invariant (LTI) Models” on page 1-13

. “Identified LTT Models” on page 1-14

. “Identified Nonlinear Models” on page 1-14

. “Generalized and Uncertain LTT Models” on page 1-16

. “Control Design Blocks” on page 1-16

1-11

1 Linear System Model Objects

Static Models

1-12

Static Models represent static input/output relationships and generalize the notions of
matrix and numeric array to parametric or uncertain arrays. You can use static models to
create parametric or uncertain expressions, and to construct Generalized LTI models
whose coefficients are parametric or uncertain expressions. The Static Models family
includes:

* Tunable parameters (realp objects)

* Generalized matrices (genmat objects)

* Uncertain parameters and matrices (ureal, ucomplex, ucomplexm) (requires Robust
Control Toolbox software)

* Uncertain matrices (umat) objects (requires Robust Control Toolbox software)

For more information about using these objects to create parametric models, see “Models
with Tunable Coefficients” on page 1-19. For information about creating uncertain static
models, see “Uncertain Real Parameters” (Robust Control Toolbox) and “Uncertain
Matrices” (Robust Control Toolbox).

Numeric Models

Numeric Models

Numeric Linear Time Invariant (LTl) Models

Numeric LTI models are the basic numeric representation of linear systems or
components of linear systems. Use numeric LTI models for modeling dynamic
components, such as transfer functions or state-space models, whose coefficients are
fixed, numeric values. You can use numeric LTI models for linear analysis or control
design tasks.

The following table summarizes the available types of numeric LTI models.

Model Type Description

tf Transfer function model in polynomial form

zpk Transfer function model in zero-pole-gain (factorized) form
Ss State-space model

frd Frequency response data model

pid Parallel-form PID controller

pidstd Standard-form PID controller

pid2 Parallel-form two-degree-of-freedom (2-DOF) PID controller
pidstd2 Standard-form 2-DOF PID controller

Creating Numeric LTI Models
For information about creating numeric LTI models, see:

* “Transfer Functions” on page 2-3

* “State-Space Models” on page 2-6

* “Frequency Response Data (FRD) Models” on page 2-10

* “Proportional-Integral-Derivative (PID) Controllers” on page 2-13

Applications of Numeric LTI Models

You can use Numeric LTI models to represent block diagram components such as plant or
sensor dynamics. By connecting Numeric LTT models together, you can derive Numeric
LTI models of block diagrams. Use Numeric LTI models for most modeling, analysis, and
control design tasks, including:

1-13

1 Linear System Model Objects

* Analyzing linear system dynamics using analysis commands such as bode, step, or
impulse.

* Designing controllers for linear systems using the Control System Designer app or
the PID Tuner GUL

* Designing controllers using control design commands such as pidtune, rlocus, or
lqr/lqg.

Identified LTI Models

Identified LTI Models represent linear systems with coefficients that are identified using
measured input/output data (requires System Identification Toolbox software). You can
specify initial values and constraints for the estimation of the coefficients.

The following table summarizes the available types of identified LTT models.

Model Type Description

idtf Transfer function model in polynomial form, with
identifiable parameters

idss State-space model, with identifiable parameters

idpoly Polynomial input-output model, with identifiable parameters

idproc Continuous-time process model, with identifiable
parameters

idfrd Frequency-response model, with identifiable parameters

idgrey Linear ODE (grey-box) model, with identifiable parameters

Identified Nonlinear Models

Identified Nonlinear Models represent nonlinear systems with coefficients that are
identified using measured input/output data (requires System Identification Toolbox
software). You can specify initial values and constraints for the estimation of the

coefficients.

The following table summarizes the available types of identified nonlinear models.

1-14

Numeric Models

Model Type Description

idnlarx Nonlinear ARX model, with identifiable
parameters

idnlgrey Nonlinear ODE (grey-box) model, with
identifiable parameters

idnlhw Hammerstein-Wiener model, with

identifiable parameters

1-15

1 Linear System Model Objects

Generalized Models

Generalized and Uncertain LTI Models

Generalized LTI Models represent systems having a mixture of fixed coefficients and

tunable or uncertain coefficients. Generalized LTI models arise from combining numeric
LTI models with Control Design Blocks. For more information about tunable Generalized
LTI models and their applications, see “Models with Tunable Coefficients” on page 1-19.

Uncertain LTI Models are a special type of Generalized LTI model that include uncertain
coefficients but not tunable coefficients. For more information about using uncertain
models, see “Uncertain State-Space Models” (Robust Control Toolbox) and “Create
Uncertain Frequency Response Data Models” (Robust Control Toolbox).

Family Model Type Description
Generalized LTI genss Generalized LTI model arising from
Models combination of Numeric LTI models (except
frd models) with Control Design Blocks
genfrd Generalized LTI model arising from
combination frd models with Control
Design Blocks
Uncertain LTI uss Generalized LTI model arising from
Models (requires combination of Numeric LTI models (except
Robust Control frd models) with uncertain Control Design
Toolbox software) Blocks
ufrd Generalized LTT model arising from

combination frd models with uncertain
Control Design Blocks

Control Design Blocks

Control Design Blocks are building blocks for constructing tunable or uncertain models of
control systems. Combine tunable Control Design Blocks with numeric arrays or Numeric
LTI models to create Generalized Matrices or Generalized LTI models that include both
fixed and tunable components.

1-16

Generalized Models

Tunable Control Design Blocks include tunable parameter objects as well as tunable
linear models with predefined structure. For more information about using tunable
Control Design Blocks, see “Models with Tunable Coefficients” on page 1-19.

If you have Robust Control Toolbox software, you can use uncertain Control Design Blocks
to model uncertain parameters or uncertain system dynamics. For more information
about using uncertain blocks, see “Uncertain LTI Dynamics Elements” (Robust Control
Toolbox), “Uncertain Real Parameters” (Robust Control Toolbox), and “Uncertain Complex
Parameters and Matrices” (Robust Control Toolbox).

The following tables summarize the available types of Control Design Blocks.

Dynamic System Model Control Design Blocks

Family Model Type Description

Tunable Linear tunableGain Tunable gain block

Components tunableTF SISO fixed-order transfer
function with tunable
coefficients

tunableSS Fixed-order state-space
model with tunable
coefficients

tunablePID One-degree-of-freedom PID
controller with tunable
coefficients

tunablePID2 Two-degree-of-freedom PID
controller with tunable
coefficients

Uncertain Dynamics ultidyn Uncertain linear time-
(requires Robust Control invariant dynamics
Toolbox software)

udyn Unstructured uncertain
dynamics

Analysis Point Block AnalysisPoint Points of interest for linear
analysis or control system
tuning

1-17

1 Linear System Model Objects

Static Model Control Design Blocks

Family Model Type Description
Tunable Parameter realp Tunable scalar parameter or
matrix
Uncertain Parameters ureal Uncertain real scalar
(requires Robust Control ucomplex Uncertain complex scalar
Toolbox software) . _
ucomplexm Uncertain complex matrix

Generalized Matrices

Generalized Matrices extend the notion of numeric matrices to matrices that include
tunable or uncertain values.

Create tunable generalized matrices by building rational expressions involving realp
parameters. You can use generalized matrices as inputs to tf or ss to create tunable
linear models with structures other than the predefined structures of the Control Design
Blocks. Use such models for parameter studies or some compensator tuning tasks.

If you have Robust Control Toolbox software, you can create uncertain matrices by
building rational expressions involving uncertain parameters such as ureal or

ucomplex.

Model Type Description

genmat Generalized matrix that includes parametric or tunable
entries

umat (requires Robust Generalized matrix that includes uncertain entries

Control Toolbox software)

For more information about generalized matrices and their applications, see “Models with
Tunable Coefficients” on page 1-19.

1-18

Models with Tunable Coefficients

Models with Tunable Coefficients

Tunable Generalized LTI Models

Tunable Generalized LTI models represent systems having both fixed and tunable (or
parametric) coefficients.

You can use tunable Generalized LTI models to:
* Model a tunable (or parametric) component of a control system, such as a tunable low-

pass filter.
* Model a control system that contains both:

* Fixed components, such as plant dynamics and sensor dynamics
* Tunable components, such as filters and compensators

You can use tunable Generalized LTI models for parameter studies. For an example, see
“Study Parameter Variation by Sampling Tunable Model” on page 9-9. You can also use
tunable Generalized LTI models for tuning fixed control structures using tuning
commands such as systune or the Control System Tuner app. See “Multiloop,
Multiobjective Tuning”.

Modeling Tunable Components

Control System Toolbox includes tunable components with predefined structure called
“Control Design Blocks” on page 1-16. You can use tunable Control Design Blocks to
model any tunable component that fits one of the predefined structures.

To create tunable components with a specific custom structure that is not covered by the
Control Design Blocks:

1 Use the tunable real parameter realp or the generalized matrix genmat to
represent the tunable coefficients of your component.

2 Use the resulting realp or genmat objects as inputs to tf or ss to model the
component. The result is a generalized state-space (genss) model of the component.

For examples of creating such custom tunable components, see:

* “Tunable Low-Pass Filter” on page 2-78

1-19

1 Linear System Model Objects

1-20

* “Create Tunable Second-Order Filter” on page 2-80
* “Create State-Space Model with Both Fixed and Tunable Parameters” on page 2-82

Modeling Control Systems with Tunable Components

To construct a tunable Generalized LTI model representing a control system with both
fixed and tunable components:

1 Model the nontunable components of your system using numeric LTI models on page
1-13.

2 Model each tunable component using Control Design Blocks or expressions involving
such blocks. See “Modeling Tunable Components” on page 1-19.

3 Use model interconnection commands such as series, parallel or connect, or
the arithmetic operators +, -, *, /, \, and *, to combine all the components of your
system.

The resulting model is:

* A genss model, if none of the nontunable components is a frequency response data
model (for example, frd)

* A genfrd model, if the nontunable component is a frd model

For an example of constructing a genss model of a control system with both fixed and
tunable components, see “Control System with Tunable Components” on page 2-84.

Internal Structure of Generalized Models

A Generalized model separately stores the numeric and parametric portions of the model
by structuring the model in Standard Form, as shown in the following illustration.

Models with Tunable Coefficients

w . —z

I y
B, 0 0
0 B,
o |k
B

w and z represent the inputs and outputs of the Generalized model.

H represents all portions of the Generalized model that have fixed (non-parametric)
coefficients. H is:

» A state-space (ss) model, for genss models

* A frequency response data (frd) model, for genfrd models

* A matrix, for genmat models

B represents the parametric components of the Generalized model, which are the Control
Design Blocks By, . . ., By. The Blocks property of the Generalized model stores a list of

the names of these blocks. If the Generalized model has blocks that occur multiple times
in By, . .., By, these are only listed once in the Blocks property.

To access the internal representation of a Generalized model, including H and B, use the
getLFTModel command.

1-21

1 Linear System Model Objects

1-22

This Standard Form can represent any control structure. To understand why, consider the

control structure as an aggregation of fixed-coefficient elements interacting with the
parametric elements:

external

inputs \’ H
W
_> Fixed system
components _\

(actuators, external
y sensors, efo.) outputs
1

- R ’
Ny NP

¥o By

Uz
To rewrite this in Standard Form, define

u: =[uy, ..., uy]
y: = [V, IN]
and group the tunable control elements B, . . ., By into the block-diagonal configuration

C. P includes all the fixed components of the control architecture—actuators, sensors, and
other nontunable elements—and their interconnections.

Using Model Objects

Using Model Objects

After you represent your dynamic system as a model object, you can:

Attach additional information to the model using model attributes (properties). See
“Model Attributes”.

Manipulate the model using arithmetic and model interconnection operations. See
“Model Interconnection”.

Analyze the model response using commands such as bode and step. See “Linear
Analysis”.

Perform parameter studies using model arrays. See “Model Arrays”.

Design compensators. You can:

Design compensators for systems specified as numeric LTI models. Available
compensator design techniques include PID tuning, root locus analysis, pole
placement, LQG optimal control, and frequency domain loop-shaping. See “PID

VT

Controller Tuning”, “Classical Control Design”, or “State-Space Control Design”.

Manually tune many control architectures using Control System Designer. See
“Classical Control Design”.

Use tuning commands such as systune or Control System Tuner to
automatically tune a control system that you represent as a genss model with
tunable blocks. See “Multiloop, Multiobjective Tuning”.

1-23

1 Linear System Model Objects

References

[1] Dorf, R.C. and R.H. Bishop, Modern Control Systems, Addison-Wesley, Menlo Park, CA,
1998.

1-24

Model Creation

* “Transfer Functions” on page 2-3

» “State-Space Models” on page 2-6

* “Frequency Response Data (FRD) Models” on page 2-10

* “Proportional-Integral-Derivative (PID) Controllers” on page 2-13

* “Two-Degree-of-Freedom PID Controllers” on page 2-16

* “Discrete-Time Numeric Models” on page 2-23

* “Discrete-Time Proportional-Integral-Derivative (PID) Controllers” on page 2-24

* “MIMO Transfer Functions” on page 2-28

+ “MIMO State-Space Models” on page 2-31

* “MIMO Frequency Response Data Models” on page 2-37

* “Select Input/Output Pairs in MIMO Models” on page 2-39

* “Time Delays in Linear Systems” on page 2-40

* “Closing Feedback Loops with Time Delays” on page 2-45

* “Time-Delay Approximation” on page 2-48

* “Time-Delay Approximation in Continuous-Time Open-Loop Model” on page 2-50

* “Time-Delay Approximation in Continuous-Time Closed-Loop Model” on page 2-55
* “Approximate Different Delays with Different Approximation Orders” on page 2-60
* “Convert Time Delay in Discrete-Time Model to Factors of 1/z” on page 2-64

* “Frequency Response Data (FRD) Model with Time Delay” on page 2-69

* “Internal Delays” on page 2-73

* “Tunable Low-Pass Filter” on page 2-78

* “Create Tunable Second-Order Filter” on page 2-80

* “Create State-Space Model with Both Fixed and Tunable Parameters” on page 2-82
* “Control System with Tunable Components” on page 2-84

* “Control System with Multichannel Analysis Points” on page 2-86

* “Mark Signals of Interest for Control System Analysis and Design” on page 2-90

2 Model Creation

* “Model Arrays” on page 2-101

* “Select Models from Array” on page 2-105

* “Query Array Size and Characteristics” on page 2-108

* “Linear Parameter-Varying Models” on page 2-111

* “Using LTT Arrays for Simulating Multi-Mode Dynamics” on page 2-120

2-2

Transfer Functions

Transfer Functions

Transfer Function Representations

Control System Toolbox software supports transfer functions that are continuous-time or
discrete-time, and SISO or MIMO. You can also have time delays in your transfer function
representation.

A SISO continuous-time transfer function is expressed as the ratio:

G) = Do)

of polynomials N(s) and D(s), called the numerator and denominator polynomials,
respectively.

You can represent linear systems as transfer functions in polynomial or factorized (zero-
pole-gain) form. For example, the polynomial-form transfer function:

=52—35—4
s2+5s+6

G(s)

can be rewritten in factorized form as:

_(s+1)(s—-4)

OO s+ +3)

The tf model object represents transfer functions in polynomial form. The zpk model
object represents transfer functions in factorized form.

MIMO transfer functions are arrays of SISO transfer functions. For example:

s—-3
+4
+1

G(s) =

v O

+ 2

%]

is a one-input, two output transfer function.

2-3

2 Model Creation

2-4

Commands for Creating Transfer Functions

Use the commands described in the following table to create transfer functions.

Command Description

tf Create tf objects representing continuous-time or discrete-
time transfer functions in polynomial form.

zpk Create zpk objects representing continuous-time or discrete-
time transfer functions in zero-pole-gain (factorized) form.

filt Create tf objects representing discrete-time transfer
functions using digital signal processing (DSP) convention.

Create Transfer Function Using Numerator and Denominator
Coefficients

This example shows how to create continuous-time single-input, single-output (SISO)
transfer functions from their numerator and denominator coefficients using tf.

Create the transfer function G(s) = 2;:
s°+3s+2

num = [1 0];

den = [1 3 2];

G = tf(num,den);

num and den are the numerator and denominator polynomial coefficients in descending
powers of s. For example, den = [1 3 2] represents the denominator polynomial
s?2 + 3s + 2.

G is a tf model object, which is a data container for representing transfer functions in
polynomial form.

Tip Alternatively, you can specify the transfer function G(s) as an expression in s:
1 Create a transfer function model for the variable s.

s = tf('s');
2 Specify G(s) as a ratio of polynomials in s.

See Also

G = s/(s™2 + 3*s + 2);

Create Transfer Function Model Using Zeros, Poles, and Gain

This example shows how to create single-input, single-output (SISO) transfer functions in
factored form using zpk.

S
S+1+)is+1-0)(s+2)

Create the factored transfer function G(s) = 5(

Z = [0];

P=1[-1-1i -1+1i -2];
K=175;

G = zpk(Z,P,K);

Z and P are the zeros and poles (the roots of the numerator and denominator,
respectively). K is the gain of the factored form. For example, G(s) has a real pole at s = -
2 and a pair of complex poles at s = -1 = i. Thevector P = [-1-11 -1+1i -2] specifies
these pole locations.

G is a zpk model object, which is a data container for representing transfer functions in
zero-pole-gain (factorized) form.

See Also
filt | tf | zpk

Related Examples

. “MIMO Transfer Functions” on page 2-28

. “State-Space Models” on page 2-6

. “Discrete-Time Numeric Models” on page 2-23

More About
. “What Are Model Objects?” on page 1-2
. “Store and Retrieve Model Data” on page 3-2

2-5

2 Model Creation

State-Space Models

2-6

State-Space Model Representations

State-space models rely on linear differential equations or difference equations to
describe system dynamics. Control System Toolbox software supports SISO or MIMO
state-space models in continuous or discrete time. State-space models can include time
delays. You can represent state-space models in either explicit or descriptor (implicit)
form.

State-space models can result from:

* Linearizing a set of ordinary differential equations that represent a physical model of
the system.

* State-space model identification using System Identification Toolbox software.

* State-space realization of transfer functions. (See “Conversion Between Model Types”
on page 5-2 for more information.)

Use ss model objects to represent state-space models.

Explicit State-Space Models

Explicit continuous-time state-space models have the following form:

ax _
W—Ax+Bu
y=Cx+Du

where x is the state vector. u is the input vector, and y is the output vector. A, B, C, and D
are the state-space matrices that express the system dynamics.

A discrete-time explicit state-space model takes the following form:
x[n + 1] = Ax[n] + Bu[n]
y[n] = Cx[n] + Du[n]

where the vectors x[n], u[n], and y[n] are the state, input, and output vectors for the nth
sample.

State-Space Models

Descriptor (Implicit) State-Space Models

A descriptor state-space model is a generalized form of state-space model. In continuous
time, a descriptor state-space model takes the following form:

dx _
EW—AX+Bu

y=Cx+Du

where x is the state vector. u is the input vector, and y is the output vector. A, B, C, D, and
E are the state-space matrices.

Commands for Creating State-Space Models

Use the commands described in the following table to create state-space models.

Command Description

Ss Create explicit state-space model.

dss Create descriptor (implicit) state-space model.
delayss Create state-space models with specified time delays.

Create State-Space Model From Matrices

This example shows how to create a continuous-time single-input, single-output (SISO)
state-space model from state-space matrices using ss.

Create a model of an electric motor where the state-space equations are:

dx _
m—Ax+Bu

y=Cx+Du

where the state variables are the angular position 6 and angular velocity df/dt:

0

do
at

X =

’

2-7

2 Model Creation

2-8

u is the electric current, the output y is the angular velocity, and the state-space matrices
are:

01
-5 -2

0

’ B =
3

.

], c=[01], D=[0].

To create this model, enter:

A=1[01;-5 -2];
B = [0;3];
C=1[01];

D =0;

sys = ss(A,B,C,D);

sys is an ss model object, which is a data container for representing state-space models.

Tip To represent a system of the form:

dx _
E%—Ax+Bu
y=Cx+Du

use dss. This command creates a ss model with a nonempty E matrix, also called a
descriptor state-space model. See “MIMO Descriptor State-Space Models” on page 2-32
for an example.

See Also

delayss | dss | ss

Related Examples
. “MIMO State-Space Models” on page 2-31

. “Transfer Functions” on page 2-3
. “Discrete-Time Numeric Models” on page 2-23
More About

. “What Are Model Objects?” on page 1-2

See Also

“Store and Retrieve Model Data” on page 3-2

2-9

2 Model Creation

Frequency Response Data (FRD) Models

2-10

Frequency Response Data

In the Control System Toolbox software, you can use frd models to store, manipulate,
and analyze frequency response data. An frd model stores a vector of frequency points
with the corresponding complex frequency response data you obtain either through
simulations or experimentally.

For example, suppose you measure frequency response data for the SISO system you
want to model. You can measure such data by driving the system with a sine wave at a set
of frequencies w;, wy, ,...,w,, as shown:

sin;(mf) ———s Gi(w) pf— Vijlt)

At steady state, the measured response y;(t) to the driving signal at each frequency w;
takes the following form:

yi(t) = asin(wit +b), i=1, .., n.
The measurement yields the complex frequency response G at each input frequency:
G(jw) =ae®, i=1, .. n.

You can do most frequency-domain analysis tasks on frd models, but you cannot perform
time-domain simulations with them. For information on frequency response analysis of
linear systems, see Chapter 8 of [1].

Commands for Creating FRD Models

Use the following commands to create FRD models.

Command Description

frd Create frd objects from frequency response data.

Frequency Response Data (FRD) Models

Command Description

frestimate Create frd objects by estimating the frequency response of a
Simulink® model. This approach requires Simulink Control
Design™ software. See “Offline Frequency Response
Estimation” (Simulink Control Design) for more information.

Create Frequency-Response Model from Data

This example shows how to create a single-input, single-output (SISO) frequency-response
model using frd.

A frequency-response model stores a vector of frequency points with corresponding
complex frequency response data you obtain either through simulations or
experimentally. Thus, if you measure the frequency response of your system at a set of
test frequencies, you can use the data to create a frequency response model:

1 Load the frequency response data in AnalyzerData.mat.

load AnalyzerData

This command loads the data into the MATLAB workspace as the column vectors
freqg and resp. The variables freq and resp contain 256 test frequencies and the
corresponding complex-valued frequency response points, respectively.

Tip To inspect these variables, enter:

whos freq resp

2 Create a frequency response model.
sys = frd(resp,freq);

sys is an frd model object, which is a data container for representing frequency
response data.

You can use frd models with many frequency-domain analysis commands. For example,
visualize the frequency response data using bode.

2-11

2 Model Creation

Tip By default, the frd command assumes that the frequencies are in radians/second. To
specify different frequency units, use the TimeUnit and FrequencyUnit properties of
the frd model object. For example:

sys = frd(resp,freq, 'TimeUnit', 'min', 'FrequencyUnit', 'rad/TimeUnit')

sets the frequency units to radians/minute.

See Also

frd | frestimate

Related Examples

. “MIMO Frequency Response Data Models” on page 2-37
. “Discrete-Time Numeric Models” on page 2-23

More About
. “What Are Model Objects?” on page 1-2
. “Store and Retrieve Model Data” on page 3-2

2-12

Proportional-Integral-Derivative (PID) Controllers

Proportional-Integral-Derivative (PID) Controllers

You can represent PID controllers using the specialized model objects pid and pidstd.
This topic describes the representation of PID controllers in MATLAB. For information
about automatic PID controller tuning, see “PID Controller Tuning”.

Continuous-Time PID Controller Representations

You can represent continuous-time Proportional-Integral-Derivative (PID) controllers in
either parallel or standard form. The two forms differ in the parameters used to express
the proportional, integral, and derivative actions and the filter on the derivative term, as
shown in the following table.

Form Formula
Parallel (pid object Ki, _K
arallel (pid object) C=Kp+_1+_d5,
S TfS +1
where:

* K, = proportional gain

* K, = integrator gain

* K, = derivative gain

* T;= derivative filter time

Standard (pidstd
object)

_ 1 Tgs
C_Kp1+T_iS+—Td)
WS"'].

where:

* K, = proportional gain
* T, = integrator time

e T, = derivative time

¢ N = derivative filter divisor

Use a controller form that is convenient for your application. For example, if you want to
express the integrator and derivative actions in terms of time constants, use standard

form.

2-13

2 Model Creation

For information on representing PID Controllers in discrete time, see “Discrete-Time
Proportional-Integral-Derivative (PID) Controllers” on page 2-24

Create Continuous-Time Parallel-Form PID Controller

This example shows how to create a continuous-time Proportional-Integral-Derivative
(PID) controller in parallel form using pid.

. 26.2 4.3s
Create the following parallel-form PID controller: C = 29.5 + S 006s+T"
Kp = 29.5;
Ki = 26.2;
Kd = 4.3;
Tf = 0.06;
C = pid(Kp,Ki,Kd,Tf)

C is a pid model object, which is a data container for representing parallel-form PID
controllers. For more examples of how to create PID controllers, see the pid reference

page.

Create Continuous-Time Standard-Form PID Controller

This example shows how to create a continuous-time Proportional-Integral-Derivative
(PID) controller in standard form using pidstd.

Create the following standard-form PID controller: C = 29.5|1 + 1 11 35 T 0.(1)51 55 _
' WS +1

Kp = 29.5;

Ti = 1.13;

Td = 0.15;

N =2.3;

C = pidstd(Kp,Ti,Td,N)

C is a pidstd model object, which is a data container for representing standard-form PID
controllers. For more examples of how to create standard-form PID controllers, see the
pidstd reference page.

2-14

See Also

See Also
pid | pidTuner | pidstd | pidtune

Related Examples

. “Transfer Functions” on page 2-3

. “Discrete-Time Proportional-Integral-Derivative (PID) Controllers” on page 2-24
. “Two-Degree-of-Freedom PID Controllers” on page 2-16

More About
. “What Are Model Objects?” on page 1-2
. “Store and Retrieve Model Data” on page 3-2

2-15

2 Model Creation

Two-Degree-of-Freedom PID Controllers

2-16

Two-degree-of-freedom (2-DOF) PID controllers include setpoint weighting on the
proportional and derivative terms. A 2-DOF PID controller is capable of fast disturbance
rejection without significant increase of overshoot in setpoint tracking. 2-DOF PID
controllers are also useful to mitigate the influence of changes in the reference signal on
the control signal.

You can represent PID controllers using the specialized model objects pid2 and

pidstd2. This topic describes the representation of 2-DOF PID controllers in MATLAB.
For information about automatic PID controller tuning, see “PID Controller Tuning”.

Continuous-Time 2-DOF PID Controller Representations

This illustration shows a typical control architecture using a 2-DOF PID controller.

= .
[S -

2-DOF PID Plant
Contraller

The relationship between the 2-DOF controller’s output (u) and its two inputs (r and y)
can be represented in either parallel or standard form. The two forms differ in the
parameters used to express the proportional, integral, and derivative actions of the
controller, as expressed in the following table.

Two-Degree-of-Freedom PID Controllers

Form

Formula

Parallel (pid2 object)

_ K; Kgs
u —Kp(br—y)+?(r—y)+m(cr—y).

In this representation:

* K, = proportional gain

* K; = integrator gain

* K, = derivative gain

¢ T, = derivative filter time

* b = setpoint weight on proportional term
* ¢ = setpoint weight on derivative term

Standard (pidstd2 object)

_ 1 Tgs
u=Kp (br—y)+T—is(r—y)+ T
WS"'].

(cr=y)|.

In this representation:

* K, = proportional gain

* T, = integrator time

e T, = derivative time

* N = derivative filter divisor

* b = setpoint weight on proportional term
* ¢ = setpoint weight on derivative term

Use a controller form that is convenient for your application. For instance, if you want to
express the integrator and derivative actions in terms of time constants, use standard
form. For examples showing how to create parallel-form and standard-form controllers,
see the pid2 and pidstd?2 reference pages, respectively.

For information on representing PID Controllers in discrete time, see “Discrete-Time
Proportional-Integral-Derivative (PID) Controllers” on page 2-24.

2-17

2 Model Creation

2-18

2-DOF Control Architectures

The 2-DOF PID controller is a two-input, one output controller of the form C,(s), as shown
in the following figure. The transfer function from each input to the output is itself a PID
controller.

L)

(%)

L 3

('_Tl:.w}

Each of the components C,(s) and C(s) is a PID controller, with different weights on the
proportional and derivative terms. For example, in continuous time, these components are
given by:

a K; cKys
_ K; Kgs
Cy(S)——Kp+?+m.

You can access these components by converting the PID controller into a two-input, one-
output transfer function. For example, suppose that C2 is a 2-DOF PID controller, stored
as a pid2 object.

C.(s) is the transfer function from the first input of C2 to the output. Similarly, C,(s) is the
transfer function from the second input of C2 to the output.

Two-Degree-of-Freedom PID Controllers

Suppose that G is a dynamic system model, such as a zpk model, representing the plant.
Build the closed-loop transfer function from r to y. Note that the C,(s) loop has positive
feedback, by the definition of C\(s).

T = Cr*feedback(G,Cy,+1)

Alternatively, use the connect command to build an equivalent closed-loop system
directly with the 2-DOF controller C2. To do so, set the InputName and OutputName
properties of G and C2.

G.InputName = 'u';
G.OQutputName 'y
C2.Inputname {'r','y'};
C2.0utputName = 'u';

T = connect(G,C2,'r','y");

’
1
1

There are other configurations in which you can decompose a 2-DOF PID controller into
SISO components. For particular choices of C(s) and X(s), each of the following
configurations is equivalent to the 2-DOF architecture with C,(s). You can obtain C(s) and
X(s) for each of these configurations using the getComponents command.

Feedforward
In the feedforward configuration, the 2-DOF PID controller is decomposed into a

conventional SISO PID controller that takes the error signal as its input, and a
feedforward controller.

Xi(#)

r Co ((5) B (i) -y

For a continuous-time, parallel-form 2-DOF PID controller, the components are given by:

2-19

2 Model Creation

_ K; Kgs
C(s)—Kp+?+m,
(c=1)Kgs

X(S) = (b - 1)Kp + m

Access these components using getComponents.
[C,X] = getComponents(C2,'feedforward');

The following command constructs the closed-loop system from r to y for the feedforward
configuration.

T = G*(C+X)*feedback(1l,G*C);
Feedback

In the feedback configuration, the 2-DOF PID controller is decomposed into a
conventional SISO PID controller and a feedback controller.

r 5

(r{s) -V

Xix)

For a continuous-time, parallel-form 2-DOF PID controller, the components are given by:

_ K; cKys
C(s) = bKp + —+ Ts+1'
(1 -0c)Kgs

X(S) = (]. _b)Kp+W

Access these components using getComponents.

[C,X] = getComponents(C2,'feedback');

2-20

Two-Degree-of-Freedom PID Controllers

The following command constructs the closed-loop system from r to y for the feedback
configuration.

T = G*C*feedback(1,G*(C+X));
Filter

In the filter configuration, the 2-DOF PID controller is decomposed into a conventional
SISO PID controller and a prefilter on the reference signal.

r

r—e X(s) () el (7(5) -

For a continuous-time, parallel-form 2-DOF PID controller, the components are given by:

Ki KdS

s + TfS +1’

(bKpT + cKg)s® + (bKp, + KiTf)s + K;
(KpTr + Kg)s® + (Kp + KiTf)s + K

C(s) = Ky +

X(s) =

The filter X(s) can also be expressed as the ratio: -[C.(s)/C,(s)].

The following command constructs the closed-loop system from r to y for the filter
configuration.

T = X*feedback(G*C,1);

For an example illustrating the decomposition of a 2-DOF PID controller into these
configurations, see “Decompose a 2-DOF PID Controller into SISO Components” on page
5-8.

The formulas shown above pertain to continuous-time, parallel-form controllers.
Standard-form controllers and controllers in discrete time can be decomposed into
analogous configurations. The getComponents command works on all 2-DOF PID
controller objects.

2-21

2 Model Creation

See Also
getComponents | pid2 | pidTuner | pidstd2 | pidtune

Related Examples

. “Discrete-Time Proportional-Integral-Derivative (PID) Controllers” on page 2-24
. “Proportional-Integral-Derivative (PID) Controllers” on page 2-13
More About

. “What Are Model Objects?” on page 1-2
. “Store and Retrieve Model Data” on page 3-2

2-22

Discrete-Time Numeric Models

Discrete-Time Numeric Models

Create Discrete-Time Transfer Function Model

This example shows how to create a discrete-time transfer function model using tf.

Create the transfer function G(2) = — ; 5 with a sample time of 0.1 s.
z°—2z-

num = [1 0];

den = [1 -2 -6];

Ts = 0.1;

G = tf(num,den,Ts)

num and den are the numerator and denominator polynomial coefficients in descending
powers of z. G is a tf model object.

The sample time is stored in the Ts property of G. Access the sample time Ts, using dot
notation:

G.Ts

Other Model Types in Discrete Time Representations
Create discrete-time zpk, ss, and frd models in a similar way to discrete-time transfer

functions, by appending a sample time to the input arguments. For examples, see the
reference pages for those commands.

See Also
frd|ss|tf]|zpk

More About
. “What Are Model Objects?” on page 1-2

2-23

2 Model Creation

Discrete-Time Proportional-Integral-Derivative (PID)
Controllers

All the PID controller object types, pid, pidstd, pid2, and pidstd2, can represent PID
controllers in discrete time.

Discrete-Time PID Controller Representations

Discrete-time PID controllers are expressed by the following formulas.

Form Formula

Parallel (pid) : Kq

where:

* K, = proportional gain

* K, = integrator gain

* K, = derivative gain

* Ty = derivative filter time

Standard (pidstd)

T
C=Kp1+%IF(z)+Td—d,
! ~ T DF(2)

where:

* K, = proportional gain
* T, = integrator time
e T, = derivative time

¢ N = derivative filter divisor

2-24

Discrete-Time Proportional-Integral-Derivative (PID) Controllers

Form

Formula

2-DOF Parallel (pid2)

The relationship between the 2-DOF controller’s output (u) and
its two inputs (r and y) is:

u = Ky(br - y) + KiIF(2)(r - y) + T]C+—5’F(Z)(cr -y).

In this representation:

* K, = proportional gain

* K, = integrator gain

* K, = derivative gain

* T;= derivative filter time

* b = setpoint weight on proportional term
* ¢ = setpoint weight on derivative term

2-DOF Standard
(pidstd2 object)

1 T
u = Kyl (br = y) + FIF@)(r = y) + 7——

(cr=y)|.
Ti ~ T DF(2)

In this representation:

* K, = proportional gain

* T, = integrator time

* T, = derivative time

* N = derivative filter divisor

* b = setpoint weight on proportional term

* ¢ = setpoint weight on derivative term

In all of these expressions, IF(z) and DF(z) are the discrete integrator formulas for the
integrator and derivative filter, respectively. Use the IFormula and DFormula properties
of the controller objects to set the IF(z) and DF(z) formulas. The next table shows
available formulas for IF(z) and DF(z). T, is the sample time.

2-25

2 Model Creation

2-26

IFormula or DFormula IF(z) or DF(2)
ForwardEuler (default) T,
z-1
BackwardEuler Tez
z-1
Trapezoidal Tsz+1
22z-1

If you do not specify a value for IFormula, DFormula, or both when you create the
controller object, ForwardEuler is used by default. For more information about setting
and changing the discrete integrator formulas, see the reference pages for the controller
objects, pid, pidstd, pid2, and pidstd2.

Create Discrete-Time Standard-Form PID Controller

This example shows how to create a standard-form discrete-time Proportional-Integral-
Derivative (PID) controller that has K, = 29.5, T; = 1.13, T; = 0.15 N = 2.3, and sample
time Ty 0.1:

C = pidstd(29.5,1.13,0.15,2.3,0.1, ...
'IFormula’', 'Trapezoidal', 'DFormula', 'BackwardEuler')

T T.
This command creates a pidstd model with IF(z) = %;t—i and DF(z) = & 21‘

You can set the discrete integrator formulas for a parallel-form controller in the same way,
using pid.

Discrete-Time 2-DOF PI Controller in Standard Form

Create a discrete-time 2-DOF PI controller in standard form, using the trapezoidal
discretization formula. Specify the formula using Name, Value syntax.

Kp = 1;
Ti = 2.4;
Td = 0;
N = Inf;
b =0.5;
c =0;

See Also

Ts = 0.1;
C2 = pidstd2(Kp,Ti,Td,N,b,c,Ts, "IFormula’, 'Trapezoidal')
2 =
1 Ts*(z+1)
U= Kp * [(b¥rey) + ---o % ocooooe % (r-y)]

Ti 2*(z-1)
with Kp =1, Ti = 2.4, b = 0.5, Ts = 0.1

Sample time: 0.1 seconds
Discrete-time 2-DOF PI controller in standard form

Setting Td = 0 specifies a PI controller with no derivative term. As the display shows, the
values of N and c are not used in this controller. The display also shows that the
trapezoidal formula is used for the integrator.

See Also
pid | pid2 | pidstd | pidstd2

Related Examples
. “Proportional-Integral-Derivative (PID) Controllers” on page 2-13
. “Two-Degree-of-Freedom PID Controllers” on page 2-16

More About
. “What Are Model Objects?” on page 1-2
. “Store and Retrieve Model Data” on page 3-2

2-27

2 Model Creation

MIMO Transfer Functions

MIMO transfer functions are two-dimensional arrays of elementary SISO transfer
functions. There are two ways to specify MIMO transfer function models:

* Concatenation of SISO transfer function models
* Using tf with cell array arguments

Concatenation of SISO Models

Consider the following single-input, two-output transfer function.
s—1
s+1

s+ 2
s2+4s+5

H(s) =

You can specify H(s) by concatenation of its SISO entries. For instance,

h1l
h21

tf([1 -1],[1 1]);
tf([1 2],[1 4 5]);

or, equivalently,

s = tf('s")
hll = (s-1)/(s+1);
h21 = (s+2)/(s"2+4*s+5);

can be concatenated to form H(s).
H = [h1l; h21]

This syntax mimics standard matrix concatenation and tends to be easier and more
readable for MIMO systems with many inputs and/or outputs.

Tip Use zpk instead of tf to create MIMO transfer functions in factorized form on page
2-5.

2-28

See Also

Using the tf Function with Cell Arrays

Alternatively, to define MIMO transfer functions using tf, you need two cell arrays (say, N
and D) to represent the sets of numerator and denominator polynomials, respectively. See
“What Is a Cell Array?” (MATLAB) for more details on cell arrays.

For example, for the rational transfer matrix H(s), the two cell arrays N and D should
contain the row-vector representations of the polynomial entries of

N(s)=[5_1)=[s+1

s+2f s*+4s+5]

You can specify this MIMO transfer matrix H(s) by typing

N = {[1 -11;[1 21}; % Cell array for N(s)
D = {[1 1];[1 4 51}; % Cell array for D(s)
H = tf(N,D)
Transfer function from input to output...

s -1
#1: -----

s + 1

S + 2

#2: oo

Notice that both N and D have the same dimensions as H. For a general MIMO transfer
matrix H(s), the cell array entries N{i, j} and D{i, j} should be row-vector
representations of the numerator and denominator of H(s), the ijth entry of the transfer
matrix H(s).

See Also
tf | zpk

Related Examples

. “Transfer Functions” on page 2-3

2-29

2 Model Creation

More About
. “What Are Model Objects?” on page 1-2
. “Store and Retrieve Model Data” on page 3-2

2-30

MIMO State-Space Models

MIMO State-Space Models

MIMO Explicit State-Space Models

You create a MIMO state-space model in the same way as you create a SISO state-space
model on page 2-7. The only difference between the SISO and MIMO cases is the
dimensions of the state-space matrices. The dimensions of the B, C, and D matrices
increase with the numbers of inputs and outputs as shown in the following illustration.

of columns =
of inputs

|]
S -——

12

of rows = C D

of outputs
In this example, you create a state-space model for a rotating body with inertia tensor J,
damping force F, and three axes of rotation, related as:

J‘;—“t’+Fw=T
V=w.

The system input T is the driving torque. The output y is the vector of angular velocities of
the rotating body:.

To express this system in state-space form:

2-31

2 Model Creation

2-32

@:Ax+Bu
dt
y=Cx+ Du

rewrite it as:

y=w.
Then the state-space matrices are:

A=-J'F, B=J! c=1 D=o.
To create this model, enter the following commands:

[8 -3 -3; -38 -3; -3 -338];
0.2*eye(3);

-J\F;

inv(J);

eye(3);

0;

ys mimo = ss(A,B,C,D);

nwoOOoOwr G

These commands assume that J is the inertia tensor of a cube rotating about its corner,
and the damping force has magnitude 0.2.

Ssys_mimo is an ss model.

MIMO Descriptor State-Space Models

This example shows how to create a continuous-time descriptor (implicit) state-space
model using dss.

This example uses the same rotating-body system shown in “MIMO Explicit State-Space
Models” on page 2-31, where you inverted the inertia matrix J to obtain the value of the B
matrix. If J is poorly-conditioned for inversion, you can instead use a descriptor (implicit)
state-space model. A descriptor (implicit) state-space model is of the form:

dx _
EW—AX+Bu
y=Cx+Du

MIMO State-Space Models

Create a state-space model for a rotating body with inertia tensor J, damping force F, and
three axes of rotation, related as:

]ij—at)+Fw=T
V=w.

The system input T is the driving torque. The output y is the vector of angular velocities of
the rotating body. You can write this system as a descriptor state-space model having the
following state-space matrices:

A= -F, B=I C=I D=0, E=].
To create this system, enter:

[8 -3 -3; -3 8 -3; -3 -3 8];
0.2*eye(3);

-F;

eye(3);

eye(3);

0;

J;

ys mimo = dss(A,B,C,D,E)

NV MmO Ww>TGw

These commands assume that J is the inertia tensor of a cube rotating about its corner,
and the damping force has magnitude 0.2.

sys is an ss model with a nonempty E matrix.

State-Space Model of Jet Transport Aircraft

This example shows how to build a MIMO model of a jet transport. Because the
development of a physical model for a jet aircraft is lengthy, only the state-space
equations are presented here. See any standard text in aviation for a more complete
discussion of the physics behind aircraft flight.

The jet model during cruise flight at MACH = 0.8 and H = 40,000 ft. is
A = [-0.0558 -0.9968 0.0802 0.0415

0.5980 -0.1150 -0.0318 0
-3.0500 0.3880 -0.4650 0
0 0.0805 1.0000 0]1;

2-33

2 Model Creation

B=1[0.0073 0
-0.4750 0.0077
0.1530 0.1430
0 0l;
Cc=1[0 1 0 0
0 0 0 1];
D =10 0
0 01;

Use the following commands to specify this state-space model as an LTI object and attach
names to the states, inputs, and outputs.

states {'beta' 'yaw' 'roll' 'phi'};
inputs {'rudder' 'aileron'};
outputs = {'yaw rate' 'bank angle'};

sys mimo = ss(A,B,C,D, 'statename’,states,...
"inputname’,inputs, ...
‘outputname',outputs);

You can display the LTI model by typing sys mimo.

sys mimo
a =
beta yaw roll phi
beta -0.0558 -0.9968 0.0802 0.0415
yaw 0.598 -0.115 -0.0318 0
roll -3.05 0.388 -0.465 0
phi 0 0.0805 1 0
b =
rudder aileron
beta 0.0073 0
yaw -0.475 0.0077
roll 0.153 0.143
phi 0 0
C =
beta yaw roll phi

2-34

See Also

yaw rate 0 1 0 0
bank angle 0 0 0 1
d =
rudder aileron
yaw rate 0 0
bank angle 0 0

Continuous-time model.

The model has two inputs and two outputs. The units are radians for beta (sideslip angle)
and phi (bank angle) and radians/sec for yaw (yaw rate) and roll (roll rate). The rudder
and aileron deflections are in degrees.

As in the SISO case, use tf to derive the transfer function representation.

tf(sys_mimo)

Transfer function from input "rudder" to output...
-0.475 s™3 - 0.2479 s™2 - 0.1187 s - 0.05633
YaW Fat@: mm - oo s m oo
s™ + 0.6358 s™3 + 0.9389 s™2 + 0.5116 s + 0.003674

0.1148 s™2 - 0.2004 s - 1.373
bank angle: - ----omoo i
s™4 + 0.6358 s”3 + 0.9389 s"2 + 0.5116 s + 0.003674

Transfer function from input "aileron" to output...
0.0077 s™3 - 0.0005372 s™2 + 0.008688 s + 0.004523
YaW Fate: mm s oo s m oo
s™ + 0.6358 s™3 + 0.9389 s™2 + 0.5116 s + 0.003674

0.1436 s™2 + 0.02737 s + 0.1104

bank angle: - ----omoo i
s™4 + 0.6358 s”3 + 0.9389 s™2 + 0.5116 s + 0.003674

See Also

SS

2-35

2 Model Creation

Related Examples
. “State-Space Models” on page 2-6

More About
. “What Are Model Objects?” on page 1-2
. “Store and Retrieve Model Data” on page 3-2

2-36

MIMO Frequency Response Data Models

MIMO Frequency Response Data Models

This example shows how to create a MIMO frequency-response model using frd.

Frequency response data for a MIMO system includes a vector of complex response data
for each of the input/output (I/O) pair of the system. Thus, if you measure the frequency
response of each I/O pair of your system at a set of test frequencies, you can use the data
to create a frequency response model:

1

Load frequency response data in AnalyzerDataMIMO.mat.

load AnalyzerDataMIMO H11l H12 H21 H22 freq

This command loads the data into the MATLAB workspace as five column vectors
H11, H12, H21, H22, and freq. The vector freq contains 100 test frequencies. The
other four vectors contain the corresponding complex-valued frequency response of
each I/O pair of a two-input, two-output system.

Tip To inspect these variables, enter:

whos H11 H12 H21 H22 freq

Organize the data into a three-dimensional array.

Hresp = zeros(2,2,length(freq));
Hresp(1l,1,:) = H1l;
Hresp(1l,2,:) = H12;
Hresp(2,1,:) = H21;
Hresp(2,2,:) = H22;

The dimensions of Hresp are the number of outputs, number of inputs, and the
number of frequencies for which there is response data. Hresp (i, j, :) contains the
frequency response from input j to output i.

Create a frequency-response model.

H = frd(Hresp,freq);

His an frd model object, which is a data container for representing frequency response
data.

You can use frd models with many frequency-domain analysis commands. For example,
visualize the response of this two-input, two-output system using bode.

2-37

2 Model Creation

2-38

Tip By default, the frd command assumes that the frequencies are in radians/second. To
specify different frequency units, use the TimeUnit and FrequencyUnit properties of
the frd model object. For example:

H = frd(Hresp,freq, 'TimeUnit', 'min', 'FrequencyUnit"', 'rad/TimeUnit")

sets the frequency units to in radians/minute.

See Also
frd

Related Examples
. “Frequency Response Data (FRD) Models” on page 2-10

More About

. “What Are Model Objects?” on page 1-2
. “Store and Retrieve Model Data” on page 3-2

Select Input/Output Pairs in MIMO Models

Select Input/Output Pairs in MIMO Models

This example shows how to select the response from the first input to the second output
of a MIMO model.

1 Create a two-input, one-output transfer function.

{[1 -11,11];[1 2],[3 1 4]};
[11 10];

N
D
H = tf(N,D)

Note For more information about using cell arrays to create MIMO transfer
functions, see the tf reference page.

2 Select the response from the second input to the output of H.
To do this, use MATLAB array indexing.
H12 = H(1,2)

For any MIMO system H, the index notation H(1i, j) selects the response from the jth
input to the ith output.

See Also

Related Examples
. “MIMO Transfer Functions” on page 2-28
. “MIMO State-Space Models” on page 2-31

More About
. “Store and Retrieve Model Data” on page 3-2

2-39

2 Model Creation

Time Delays in Linear Systems

2-40

Use the following model properties to represent time delays in linear systems.

* InputDelay, OutputDelay — Time delays at system inputs or outputs
* 1ioDelay, InternalDelay — Time delays that are internal to the system

In discrete-time models, these properties are constrained to integer values that represent
delays expressed as integer multiples of the sample time. To approximate discrete-time
models with delays that are a fractional multiple of the sample time, use thiran.

First Order Plus Dead Time Model

This example shows how to create a first order plus dead time model using the
InputDelay or OutputDelay properties of tf.

To create the following first-order transfer function with a 2.1 s time delay:

1

_ ,—2.1s
Gls) = e s 1g-

enter:
G = tf(1,[1 10], 'InputDelay',2.1)

where InputDelay specifies the delay at the input of the transfer function.

Tip You can use InputDelay with zpk the same way as with tf:

G = zpk([],-10,1, 'InputDelay',2.1)

For SISO transfer functions, a delay at the input is equivalent to a delay at the output.
Therefore, the following command creates the same transfer function:

G = tf(1,[1 10], 'OutputDelay',2.1)

Use dot notation to examine or change the value of a time delay. For example, change the
time delay to 3.2 as follows:

G.OutputDelay = 3.2;

Time Delays in Linear Systems

To see the current value, enter:
G.OutputDelay
ans =

3.2000

Tip An alternative way to create a model with a time delay is to specify the transfer
function with the delay as an expression in s:

1 Create a transfer function model for the variable s.

s = tf('s');
2 Specify G(s) as an expression in s.

G = exp(-2.1%s)/(s+10);

Input and Output Delay in State-Space Model

This example shows how to create state-space models with delays at the inputs and
outputs, using the InputDelay or OutputDelay properties of ss.

Create a state-space model describing the following one-input, two-output system:

dz(tt) = —2x(t) + 3u(t — 1.5)
~0.7
yit) = X(t_x(t) |

This system has an input delay of 1.5. The first output has an output delay of 0.7, and the
second output is not delayed.

Note In contrast to SISO transfer functions, input delays are not equivalent to output
delays for state-space models. Shifting a delay from input to output in a state-space model
requires introducing a time shift in the model states. For example, in the model of this
example, defining T =t - 1.5 and X(T) = x(T + 1.5) results in the following equivalent
system:

2-41

2 Model Creation

9XD = —2x(T) + 3u(T)
[X(T-22)
W)= [—X(T ~1.5)]

All of the time delays are on the outputs, but the new state variable X is time-shifted
relative to the original state variable x. Therefore, if your states have physical meaning,
or if you have known state initial conditions, consider carefully before shifting time delays
between inputs and outputs.

To create this system:

1 Define the state-space matrices.

A= -2;
B = 3;
C=1[1;-11;
D =0;

2 Create the model.
G = ss(A,B,C,D, 'InputbDelay',1.5, 'OutputDelay',[0.7;0])

G is a ss model.

Tip Use delayss to create state-space models with more general combinations of input,
output, and state delays, of the form:

dx _

gt = Ax(©) + Bu(t) + 21 (Ajx(t - tj) + Bju(t - tj))

N
y(t) = Cx(t) + Du(t +E (Cjx(t - tj) + Dju(t - tj))

Transport Delay in MIMO Transfer Function

This example shows how to create a MIMO transfer function with different transport
delays for each input-output (I/O) pair.

2-42

Time Delays in Linear Systems

Create the MIMO transfer function:

-012 _-03s+1
€ s 510

—028=11
10 e s+5

Time delays in MIMO systems can be specific to each I/O pair, as in this example. You
cannot use InputDelay and OutputDelay to model I/O-specific transport delays.
Instead, use ioDelay to specify the transport delay across each /O pair.

To create this MIMO transfer function:
1 Create a transfer function model for the variable s.
s = tf('s');
2 Use the variable s to specify the transfer functions of H without the time delays.

H=[2/s (s+1)/(s+10); 10 (s-1)/(s+5)1;

3 Specify the ioDelay property of H as an array of values corresponding to the
transport delay for each I/O pair.

H.IODelay = [0.1 0.3; 0 0.2];

H is a two-input, two-output tf model. Each I/O pair in H has the time delay specified by
the corresponding entry in tau.

Discrete-Time Transfer Function with Time Delay
This example shows how to create a discrete-time transfer function with a time delay.

In discrete-time models, a delay of one sampling period corresponds to a factor of 271 in
the transfer function. For example, the following transfer function represents a discrete-
time SISO system with a delay of 25 sampling periods.

_.-25 2
H@z) =z —5g5-

To represent integer delays in discrete-time systems in MATLAB, set the 'InputDelay’

property of the model object to an integer value. For example, the following command
creates a tf model representing H(z) with a sampling time of 0.1 s.

2-43

2 Model Creation

2-44

H = tf(2,[1 -0.95],0.1, 'InputDelay',25)

Sample time: 0.1 seconds
Discrete-time transfer function.

If system has a time delay that is not an integer multiple of the sampling time, you can
use the thiran command to approximate the fractional portion of the time delay with an
all-pass filter. See “Time-Delay Approximation” on page 2-48.

See Also

Related Examples
. “Closing Feedback Loops with Time Delays” on page 2-45
. “Convert Time Delay in Discrete-Time Model to Factors of 1/z” on page 2-64

More About

. “Time-Delay Approximation” on page 2-48

Closing Feedback Loops with Time Delays

Closing Feedback Loops with Time Delays

This example shows how internal delays arise when you interconnect models that have
input, output, or transport time delays.

Create a model of the following control architecture:

) 23] o Lls =
! } 05 +=m 50 >
C G

G is the plant model, which has an input delay. C is a proportional-integral (PI) controller.
To create a model representing the closed-loop response of this system:
1 Create the plant G and the controller C.

G
C

tf(1,[1 101, 'InputDelay',2.1);
pid(0.5,2.3);

C has a proportional gain of 0.5 and an integral gain of 2.3.
2 Use feedback to compute the closed-loop response from rto y.

T = feedback(C*G,1);

The time delay in T is not an input delay as it is in G. Because the time delay is internal to
the closed-loop system, the software returns T as an ss model with an internal time delay
of 2.1 seconds.

Note In addition to feedback, any system interconnection function (including parallel
and series) can give rise to internal delays.

T is an exact representation of the closed-loop response, not an approximation. To access
the internal delay value, enter:

T.InternalDelay

A step plot of T confirms the presence of the time delay:

2-45

2 Model Creation

step(T)

Step Responze
1 4 T T T T T T T T

Amplitude

0 1 1 1 1 1 1 1
0 2 4 g g 10 12 14 16 18

Time (zec)

Note Most analysis commands, such as step, bode and margin, support models with
internal delays.

The internal time delay is stored in the InternalDelay property of T. Use dot notation
to access InternalDelay. For example, to change the internal delay to 3.5 seconds,
enter:

T.InternalDelay = 3.5

2-46

See Also

You cannot modify the number of internal delays because they are structural properties of
the model.

See Also

Related Examples

. “Convert Time Delay in Discrete-Time Model to Factors of 1/z” on page 2-64

More About
. “Internal Delays” on page 2-73

2-47

2 Model Creation

Time-Delay Approximation

2-48

Many control design algorithms cannot handle time delays directly. For example,
techniques such as root locus, LQG, and pole placement do not work properly if time
delays are present. A common technique is to replace delays with all-pass filters that
approximate the delays.

To approximate time delays in continuous-time LTI models, use the pade command to
compute a Padé approximation. The Padé approximation is valid only at low frequencies,
and provides better frequency-domain approximation than time-domain approximation. It
is therefore important to compare the true and approximate responses to choose the right
approximation order and check the approximation validity.

Time-Delay Approximation in Discrete-Time Models

For discrete-time models, use absorbDelay to convert a time delay to factors of 1/z
where the time delay is an integer multiple of the sample time.

Use the thiran command to approximate a time delay that is a fractional multiple of the
sample time as a Thiran all-pass filter.

For a time delay of tau and a sample time of Ts, the syntax thiran(tau,Ts) creates a
discrete-time transfer function that is the product of two terms:

* A term representing the integer portion of the time delay as a pure line delay, (1/2)V,
where N = ceil(tau/Ts).

* A term approximating the fractional portion of the time delay (tau - NTs) as a Thiran
all-pass filter.

Discretizing a Padé approximation does not guarantee good phase matching between the
continuous-time delay and its discrete approximation. Using thiran to generate a
discrete-time approximation of a continuous-time delay can yield much better phase
matching. For example, the following figure shows the phase delay of a 10.2-second time
delay discretized with a sample time of 1 s, approximated in three ways:

* a first-order Padé approximation, discretized using the tustin method of c2d
* an 11th-order Padé approximation, discretized using the tustin method of c2d
* an 11th-order Thiran filter

See Also

T = 10.25 with sample time of Ts = 1s

— o2d on pade of order 1
— o2d on pade of order 11
&l — Thiran all-pass filter of order 14

Phase Delay (sec)

0 I I I I I I I
4] 05 1 1.5 2 2.8 3 3.8

Frequency (radisec) 02w =nTs

The Thiran filter yields the closest approximation of the 10.2-second delay.

See the thiran reference page for more information about Thiran filters.

See Also
absorbDelay | pade | thiran

Related Examples

. “Time-Delay Approximation in Continuous-Time Open-Loop Model” on page 2-50

. “Convert Time Delay in Discrete-Time Model to Factors of 1/z” on page 2-64

. “Approximate Different Delays with Different Approximation Orders” on page 2-60

2-49

2 Model Creation

Time-Delay Approximation in Continuous-Time Open-
Loop Model

This example shows how to approximate delays in a continuous-time open-loop system
using pade.

Padé approximation is helpful when using analysis or design tools that do not support
time delays.

1 Create sample open-loop system with an output delay.

: ! 2 : ;
S T T B R e
s = tf('s');
P = exp(-2.6%s)/(s"2+0.9*s+1);

P is a second-order transfer function (tf) object with a time delay.
2 Compute the first-order Padé approximation of P.

Pndl = pade(P,1)

Pndl =

s™3 + 1.669 s™2 + 1.692 s + 0.7692
Continuous-time transfer function.
This command replaces all time delays in P with a first-order approximation.
Therefore, Pnd1 is a third-order transfer function with no delays.
3 Compare the frequency response of the original and approximate models using
bodeplot.

h = bodeoptions;

h.PhaseMatching = 'on';

bodeplot(P,'-b',Pndl,"'-.r',{0.1,10},h)

legend('Exact delay', 'First-Order Pade', 'Location', 'SouthWest"')

2-50

Time-Delay Approximation in Continuous-Time Open-Loop Model

—
=

Magnitude (dB}
B 2 o

“

o®

3 8

Phase (deg)

-1440 | ——— Exadt dalay -

————— First-Ordar Pada

107" 10? 10!
Frequency (rad/s)

The magnitude of P and Pnd1 match exactly. However, the phase of Pnd1 deviates
from the phase of P beyond approximately 1 rad/s.

4 Increase the Padé approximation order to extend the frequency band in which the
phase approximation is good.
Pnd3 = pade(P,3);

5 Compare the frequency response of P, Pnd1 and Pnd3.
bodeplot(P,'-b',Pnd3,"'-.r"',Pndl, ':k',{0.1 10},h)

legend('Exact delay', 'Third-Order Pade', 'First-Order Pade',...
'Location', 'SouthWest')

2-51

2 Model Creation

=
||
|
/

L
=
T
1

Magnitude (dB}
B

2

o

— Exad dalay
1440 Third-Ordar Pada
""""" First-Ordar Pada

107" 10" 10"
Frequency (rad/s)

The phase approximation error is reduced by using a third-order Padé approximation.
6 Compare the time domain responses of the original and approximated systems using
stepplot.

stepplot(P,"'-b',Pnd3,"'-.r',Pndl, ':k")
legend('Exact delay', 'Third-Order Pade', 'First-Order Pade',...
'Location', 'Southeast"')

2-52

Time-Delay Approximation in Continuous-Time Open-Loop Model

Amplitude

Step Response
1.4 . .

. Exactdelay
n2F e e Third-Order Pade | -
""""" First-Order Pade
0.4 ' :
0 5 10 15

Time (seconds)

Using the Padé approximation introduces a nonminimum phase artifact (“wrong way”
effect) in the initial transient response. The effect is quite pronounced in the first-
order approximation, which dips significantly below zero before changing direction.
The effect is reduced in the higher-order approximation, which far more closely
matches the exact system’s response.

Note Using too high an approximation order may result in numerical issues and
possibly unstable poles. Therefore, avoid Padé approximations with order N>10.

2-53

2 Model Creation

See Also
pade

Related Examples

. “Time-Delay Approximation in Continuous-Time Closed-Loop Model” on page 2-55

More About
. “Time-Delay Approximation” on page 2-48
. “Internal Delays” on page 2-73

2-54

Time-Delay Approximation in Continuous-Time Closed-Loop Model

Time-Delay Approximation in Continuous-Time Closed-
Loop Model

This example shows how to approximate delays in a continuous-time closed-loop system
with internal delays, using pade.

Padé approximation is helpful when using analysis or design tools that do not support
time delays.

1 Create sample continuous-time closed-loop system with an internal delay.

0.15 et St
r—> J 006+T+0006S > §2+0.68s + 1 >y
C G

Construct a model Tcl of the closed-loop transfer function from r to y.

s = tf('s'");

G = (s+1)/(s"2+.68*s+1)*exp(-4.2*s);
C = pid(0.06,0.15,0.006);

Tcl = feedback(G*C,1);

Examine the internal delay of Tcl.
Tcl.InternalDelay

ans = 4.2000
2 Compute the first-order Padé approximation of Tcl.
Tndl = pade(Tcl,1);
Tnd1 is a state-space (ss) model with no delays.
3 Compare the frequency response of the original and approximate models.
h = bodeoptions;
h.PhaseMatching = 'on';

bodeplot(Tcl,'-b',Tndl,'-.r"',{.1,10},h);
legend('Exact delay', 'First-Order Pade', 'Location', 'SouthWest');

2-55

2 Model Creation

-
=]

=]
I

L
=]
T

Magnitude (dB}
MM

5

“1440 | | ——— Exad dalay 7
————— First-COrdar Pada
-1800 s . P .
107" 10" 10"

Frequency (rad/s)

The magnitude and phase approximation errors are significant beyond 1 rad/s.
Compare the time domain response of Tcl and Tnd1 using stepplot.

stepplot(Tcl,'-b',Tndl,"'-.r");
legend('Exact delay', 'First-Order Pade', 'Location', 'SouthEast');

2-56

Time-Delay Approximation in Continuous-Time Closed-Loop Model

Amplitude

Exact delay
First-COrder Fade

10 15 20 25 30
Time (seconds)

]
[5

Using the Padé approximation introduces a nonminimum phase artifact (“wrong way”
effect) in the initial transient response.

Increase the Padé approximation order to see if this will extend the frequency with
good phase and magnitude approximation.

Tnd3 = pade(Tcl,3);

Observe the behavior of the third-order Padé approximation of Tcl. Compare the
frequency response of Tcl and Tnd3.

bodeplot(Tcl,'-b',Tnd3,"'-.r',Tndl,"'--k',{.1,10},h);
legend('Exact delay', 'Third-Order Pade', 'First-Order Pade',...
'Location', 'SouthWest');

2-57

2 Model Creation

2-58

L
=

Magnitude (dB}

-8 & 8 B

3 8

F‘h:lase (deqg}
g

1440

-1800

The magnitude and phase approximation errors are reduced when a third-order Padé

— Exad dalay
B Third-Ordar Pada

— — — Firsl-Ordar Pada

approximation is used.

Increasing the Padé approximation order extends the frequency band where the
approximation is good. However, too high an approximation order may result in numerical
issues and possibly unstable poles. Therefore, avoid Padé approximations with order

N>10.

See Also

pade

10" 10"
Frequency (rad/s)

See Also

Related Examples

. “Approximate Different Delays with Different Approximation Orders” on page 2-60

More About
. “Time-Delay Approximation” on page 2-48
. “Internal Delays” on page 2-73

2-59

2 Model Creation

Approximate Different Delays with Different
Approximation Orders

This example shows how to specify different Padé approximation orders to approximate
internal and output delays in a continuous-time open-loop system.

Load a sample continuous-time open-loop system that contains internal and output time

delays.
load(fullfile(matlabroot, 'examples', 'control', 'PadeApproximationl.mat'), 'sys"')
Sys
sys =
A =
x1 X2
x1l -1.5 -0.1
X2 1 0
B =
ul
x1 1
X2 0
C =
x1 X2
yl 0.5 0.1
D =
ul
yl 0

(values computed with all internal delays set to zero)

Output delays (seconds): 1.5
Internal delays (seconds): 3.4

Continuous-time state-space model.

sys is a second-order continuous-time ss model with internal delay 3.4 s and output
delay 1.5 s.

2-60

Approximate Different Delays with Different Approximation Orders

Use the pade function to compute a third-order approximation of the internal delay and a
first-order approximation of the output delay.

P13 = pade(sys,inf,1,3);
size(P13)

State-space model with 1 outputs, 1 inputs, and 6 states.

The three input arguments following sys specify the approximation orders of any input,
output, and internal delays of sys, respectively. inf specifies that a delay is not to be
approximated. The approximation orders for the output and internal delays are one and
three respectively.

Approximating the time delays with pade absorbs delays into the dynamics, adding as
many states to the model as orders in the approximation. Thus, P13 is a sixth-order model
with no delays.

For comparison, approximate only the internal delay of sys, leaving the output delay
intact.

P3 = pade(sys,inf,inf,3);
size(P3)

State-space model with 1 outputs, 1 inputs, and 5 states.
P3.0utputDelay
ans = 1.5000
P3.InternalDelay
ans =
0x1 empty double column vector

P3 retains the output delay, but the internal delay is approximated and absorbed into the
state-space matrices, resulting in a fifth-order model without internal delays.

Compare the frequency response of the exact and approximated systems sys, P13, P3.

h = bodeoptions;

h.PhaseMatching = 'on';

bode(sys, 'b-"',P13,'r-.",P3,'k--',h,{.01,10});

legend('sys', 'approximated output and internal delays', 'approximated internal delay on’
'location', 'SouthWest"')

2-61

2 Model Creation

L
=
T

Magnitude (dB}
&

o8 R B

. ~ Phase (deg}
EERN

EYE
r appraxdimatad output and intamal dalays
— — — appradimalad intamal dalay anly

" " " PR | M

10° 107" 107 10
Frequency (rad/s)

Notice that approximating the internal delay loses the gain ripple displayed in the exact
system.

See Also
pade

Related Examples

. “Time-Delay Approximation in Continuous-Time Open-Loop Model” on page 2-50

2-62

See Also

More About
. “Time-Delay Approximation” on page 2-48
. “Internal Delays” on page 2-73

2-63

2 Model Creation

Convert Time Delay in Discrete-Time Model to Factors of

1/z

2-64

This example shows how to convert a time delay in a discrete-time model to factors of 1/
Z .
In a discrete-time model, a time delay of one sampling interval is equivalent to a factor of
1/ z (a pole at z = 0) in the model. Therefore, time delays stored in the InputDelay,
OutputDelay, or I0Delay properties of a discrete-time model can be rewritten in the
model dynamics by rewriting them as poles at z = 0. However, the additional poles
increase the order of the system. Particularly for large time delays, this can yield systems
of very high order, leading to long computation times or numerical inaccuracies.

To illustrate how to eliminate time delays in a discrete-time closed-loop model, and to
observe the effects of doing so, create the following closed-loop system:

.P"—-{__ [—PGT_}’

G is a first-order discrete-time system with an input delay, and C is a PI controller.

$5(0.9,0.125,0.08,0,'Ts',0.01, 'InputDelay',7);
pid(6,90,0,0,'Ts',0.01);

G
C
T feedback(C*G,1);

Closing the feedback loop on a plant with input delays gives rise to internal delays in the
closed-loop system. Examine the order and internal delay of T.

order(T)
ans = 2
T.InternalDelay
ans =7

T is a second-order state-space model. One state is contributed by the first-order plant,
and the other by the one pole of the PI controller. The delays do not increase the order of
T. Instead, they are represented as an internal delay of seven time steps.

Convert Time Delay in Discrete-Time Model to Factors of 1/z

Replace the internal delay by 2~”.
Tnd = absorbDelay(T);

This command converts the internal delay to seven poles at z = 0. To confirm this,
examine the order and internal delay of Tnd.

order(Tnd)
ans = 9
Tnd.InternalDelay
ans =
0x1 empty double column vector

Tnd has no internal delay, but it is a ninth-order model, due to the seven extra poles
introduced by absorbing the seven-unit delay into the model dynamics.

Despite this difference in representation, the responses of Tnd exactly match those of T.

stepplot(T,Tnd, 'r--")
legend('T','Tnd")

2-65

2 Model Creation

Step Response

1.4

=
m
.

Amplitude
=
o

0271

0.8

0.6

1.2

0.4

bodeplot(T,Tnd, 'r--")
legend('T", 'Tnd")

2-66

Time {Seﬂondﬁ}

See Also

Phase (deq)

Bode Diagram

Magnitude (dB)

:—''_'-'_‘-._

-360 |

-T20 1

-1080

1440 '
107" Ik

See Also
pade

Related Examples

10"
Frequency (rad/s)

. “Time-Delay Approximation in Continuous-Time Open-Loop Model” on page 2-50

More About

. “Time-Delay Approximation” on page 2-48

2-67

2 Model Creation

. “Internal Delays” on page 2-73

2-68

Frequency Response Data (FRD) Model with Time Delay

Frequency Response Data (FRD) Model with Time Delay

This example shows that absorbing time delays into frequency response data can cause
undesirable phase wrapping at high frequencies.

When you collect frequency response data for a system that includes time delays, you can
absorb the time delay into the frequency response as a phase shift. Alternatively, if you
are able to separate time delays from your measured frequency response, you can
represent the delays using the InputDelay, OutputDelay, or ioDelay properties of the
frd model object. The latter approach can give better numerical results, as this example
illustrates.

The frd model fsys includes a transport delay of 2 s. Load the model into the MATLAB®
workspace and inspect the time delay.

load(fullfile(matlabroot, 'examples', 'control','frddelayexample.mat'),'fsys"')
fsys.IODelay

ans = 2

A Bode plot of fsys shows the effect of the transport delay, causing the accumulation of
phase as frequency increases.

bodeplot(fsys)

2-69

2 Model Creation

Bode Diagram

-10

f'

220 R y

Magnitude

40 ¢ - a

0 —— T

5760 -]

Phase (deq)

17280 = :
10" 10" 10°
Frequency (rad/s)

The absorbDelay command absorbs all time delays directly into the frequency response,
resulting in an frd model with I0Delay = 0.

fsys2 = absorbDelay(fsys);
fsys2.I0Delay

ans = 0

Comparing the two ways of representing the delay shows that absorbing the delay into
the frequency response causes phase-wrapping.

bode(fsys, fsys2)

2-70

See Also

Phase (deq)

Bode Diagram

-10

B)

220

Magnitude

rr—

40 &

0

5760

-11520

17280 ~
10°

10"
Frequency (rad/s)

10°

Phase wrapping can introduce numerical inaccuracy at high frequencies or where the
frequency grid is sparse. For that reason, if your system takes the form e~ "G(s), you

might get better results by measuring frequency response data for G(s) and using
InputDelay, OutputDelay, or ioDelay to model the time delay T.

See Also
absorbDelay

2-71

2 Model Creation

More About

. “Time-Delay Approximation” on page 2-48

2-72

Internal Delays

Internal Delays

Using the InputDelay, OutputDelay, and ioDelay properties, you can model simple
processes with transport delays. However, these properties cannot model more complex
situations, such as feedback loops with delays. In addition to the InputDelay and
OutputDelay properties, state-space (ss) models have an InternalDelay property.
This property lets you model the interconnection of systems with input, output, or
transport delays, including feedback loops with delays. You can use InternalDelay
property to accurately model and analyze arbitrary linear systems with delays. Internal
delays can arise from the following:

* Concatenating state-space models with input and output delays.

* Feeding back a delayed signal.
* Converting MIMO tf or zpk models with transport delays to state-space form.

Using internal time delays, you can do the following:

* In continuous time, generate approximate-free time and frequency simulations,
because delays do not have to be replaced by a Padé approximation. In continuous
time, this allows for more accurate analysis of systems with long delays.

* In discrete time, keep delays separate from other system dynamics, because delays
are not replaced with poles at z = 0, which boosts efficiency of time and frequency
simulations for discrete-time systems with long delays.

* Use most Control System Toolbox functions.

» Test advanced control strategies for delayed systems. For example, you can implement
and test an accurate model of a Smith predictor. See the example “Control of
Processes with Long Dead Time: The Smith Predictor”.

Why Internal Delays Are Necessary
This example illustrates why input, output, and transport delays not enough to model all

types of delays that can arise in dynamic systems. Consider the simple feedback loop with
a 2 s. delay:

2-73

2 Model Creation

2-74

The closed-loop transfer function is

e—25

S+2+e 28

The delay term in the numerator can be represented as an output delay. However, the
delay term in the denominator cannot. In order to model the effect of the delay on the
feedback loop, the InternalDelay property is needed to keep track of internal coupling
between delays and ordinary dynamics.

Typically, you do not create state-space models with internal delays directly, by specifying
the A, B, C, and D matrices together with a set of internal delays. Rather, such models
arise when you interconnect models having delays. There is no limitation on how many
delays are involved and how the models are connected. For an example of creating an
internal delay by closing a feedback loop, see “Closing Feedback Loops with Time Delays”
on page 2-45.

Behavior of Models With Internal Delays

When you work with models having internal delays, be aware of the following behavior:

* When a model interconnection gives rise to internal delays, the software returns an ss
model regardless of the interconnected model types. This occurs because only ss
supports internal delays.

* The software fully supports feedback loops. You can wrap a feedback loop around any
system with delays.

* When displaying the A, B, C, and D matrices, the software sets all delays to zero
(creating a zero-order Padé approximation). This approximation occurs for the display
only, and not for calculations using the model.

For some systems, setting delays to zero creates singular algebraic loops, which result
in either improper or ill-defined, zero-delay approximations. For these systems:

Internal Delays

* Entering sys returns only sizes for the matrices of a system named sys.
* Entering sys.A produces an error.

The limited display and the error do not imply a problem with the model sys itself.

Inside Time Delay Models

State-space objects use generalized state-space equations to keep track of internal delays.
Conceptually, such models consist of two interconnected parts:

* An ordinary state-space model H(s) with an augmented I/O set
* A bank of internal delays.

ut) ¥l

Y

H(s)

wii) EXP(-1, 5) = (i)

XTS5

[
[
|
|
[
[
|
|
[
[
|
[
|
[
|
|
|
|
L

The corresponding state-space equations are:

x = Ax(t) + Byu(t) + Byw(t)
y(t) = C1x(t) + Dyyu(t) + Dyow(t)
2(t) = Cox(t) + Dyqu(t) + Dyow(t)
wijlt) =z(t-1), j=1,.,N
You need not bother with this internal representation to use the tools. If, however, you

want to extract H or the matrices A, B1, B2, . .. , you can use getDelayModel, For the
example:

2-75

2 Model Creation

P = 5*exp(-3.4%s)/(s+1);
C=20.1%* (1+ 1/(5%s));
T = feedback(ss(P*C),1);

(T, '1ft");

[H,tau] = getDelayMode
size(H)

Note that H is a two-input, two-output model whereas T is SISO. The inverse operation
(combining H and tau to construct T) is performed by setDelayModel.

See [1], [2] for details.

Functions That Support Internal Time Delays

The following commands support internal delays for both continuous- and discrete-time
systems:

» All interconnection functions

* Time domain response functions—except for impulse and initial

* Frequency domain functions—except for norm

Limitations on Functions that Support Internal Time Delays

The following commands support internal delays for both continuous- and discrete-time
systems and have certain limitations:

* allmargin, margin—Uses interpolation, therefore these commands are only as
precise as the fineness of the specified grid.
* pole, zero—Returns poles and zeros of the system with all delays set to zero.

* ssdata, get—If an SS model has internal delays, these commands return the A, B, C,
and D matrices of the system with all internal delays set to zero. Use getDelayModel
to access the internal state-space representation of models with internal delays.

Functions That Do Not Support Internal Time Delays

The following commands do not support internal time delays:

* System dynamics—norm and isstable
* Time-domain analysis—initial and initialplot
* Model simplification—balreal, balred, and modred

2-76

See Also

* Compensator design—rlocus, 1qg, lqry, lgrd, kalman, kalmd, lqgreg, lqgtrack,
1qgi, and augstate.

To use these functions on a system with internal delays, use pade to approximate the
internal delays. See “Time-Delay Approximation” on page 2-48.

References

[1] P. Gahinet and L.F. Shampine, "Software for Modeling and Analysis of Linear Systems
with Delays," Proc. American Control Conf., Boston, 2004, pp. 5600-5605

[2] L.E. Shampine and P. Gahinet, Delay-differential-algebraic Equations in Control Theory,
Applied Numerical Mathematics, 56 (2006), pp. 574-588

See Also

Related Examples
. “Closing Feedback Loops with Time Delays” on page 2-45

2-77

2 Model Creation

Tunable Low-Pass Filter

2-78

In this example, you will create a low-pass filter with one tunable parameter a:

a

F=<13a

Since the numerator and denominator coefficients of a tunableTF block are
independent, you cannot use tunableTF to represent F. Instead, construct F using the
tunable real parameter object realp.

Create a real tunable parameter with an initial value of 10.

a = realp('a',10)
a:
Name: 'a’
Value: 10

Minimum: -Inf
Maximum: Inf
Free: 1

Real scalar parameter.

Use tf to create the tunable low-pass filter F.
numerator = a;

denominator = [1,a];

F = tf(numerator,denominator)

F =

Generalized continuous-time state-space model with 1 outputs, 1 inputs, 1 states, ant
a: Scalar parameter, 2 occurrences.

Type "ss(F)" to see the current value, "get(F)" to see all properties, and "F.Blocks" -

F is a genss object which has the tunable parameter a in its Blocks property. You can
connect F with other tunable or numeric models to create more complex control system
models. For an example, see “Control System with Tunable Components” on page 2-84.

See Also

See Also
genss | realp | tunableTF

More About

. “Models with Tunable Coefficients” on page 1-19

. “Create Tunable Second-Order Filter” on page 2-80

. “Create State-Space Model with Both Fixed and Tunable Parameters” on page 2-82
. “Control System with Tunable Components” on page 2-84

2-79

2 Model Creation

Create Tunable Second-Order Filter

2-80

This example shows how to create a parametric model of the second-order filter:

i

 S2 4+ 20wys + w2’

F(s)

where the damping ¢ and the natural frequency wy, are tunable parameters.

Define the tunable parameters using realp.

wn = realp('wn',3);
zeta = realp('zeta',0.8);

wn and zeta are realp parameter objects, with initial values 3 and 0.8, respectively.
Create a model of the filter using the tunable parameters.
F = tf(wn™2,[1 2*zeta*wn wn"2]);

The inputs to tf are the vectors of numerator and denominator coefficients expressed in
terms of wn and zeta.

F is a genss model. The property F.Blocks lists the two tunable parameters wn and
zeta.

F.Blocks

ans = struct with fields:
wn: [1x1 realp]
zeta: [1x1 realpl]

You can examine the number of tunable blocks in a generalized model using nblocks.
nblocks (F)

ans = 6

F has two tunable parameters, but the parameter wn appears five times - Twice in the
numerator and three times in the denominator.

To reduce the number of tunable blocks, you can rewrite F as:

See Also

1
(G)+t

F(s) =

Create the alternative filter.

F = tf(1,[(1/wn)"2 2*zeta*(1/wn) 11);

Examine the number of tunable blocks in the new model.
nblocks (F)

ans = 4

In the new formulation, there are only three occurrences of the tunable parameter wn.
Reducing the number of occurrences of a block in a model can improve the performance
of calculations involving the model. However, the number of occurrences does not affect
the results of tuning the model or sampling it for parameter studies.

See Also

genss | nblocks | realp

More About

. “Models with Tunable Coefficients” on page 1-19

. “Tunable Low-Pass Filter” on page 2-78

. “Create State-Space Model with Both Fixed and Tunable Parameters” on page 2-82
. “Control System with Tunable Components” on page 2-84

2-81

2 Model Creation

Create State-Space Model with Both Fixed and Tunable
Parameters

2-82

This example shows how to create a state-space genss model having both fixed and
tunable parameters.

-3.0
1.5

la+b

A=
0 ab

’

], C=[0.30], D=0,

where a and b are tunable parameters, whose initial values are -1 and 3, respectively.

Create the tunable parameters using realp.

a
b

realp('a’', -
realp('b',3

1);
).

Define a generalized matrix using algebraic expressions of a and b.
A = [1 a+tb;0 a*b];

A is a generalized matrix whose Blocks property contains a and b. The initial value of A
is[1 2;0 -3], from the initial values of a and b.

Create the fixed-value state-space matrices.

B=1[-3.0;1.5];
C=10.30];
D =0;

Use ss to create the state-space model.
sys = ss(A,B,C,D)
sys =
Generalized continuous-time state-space model with 1 outputs, 1 inputs, 2 states, ant
a: Scalar parameter, 2 occurrences.
b: Scalar parameter, 2 occurrences.

Type "ss(sys)" to see the current value, "get(sys)" to see all properties, and "sys.Bl

sys is a generalized LTI model (genss) with tunable parameters a and b. Confirm that
the A property of sys is stored as a generalized matrix.

See Also

sys.A

ans =
Generalized matrix with 2 rows, 2 columns, and the following blocks:
a: Scalar parameter, 2 occurrences.
b: Scalar parameter, 2 occurrences.

Type "double(ans)" to see the current value, "get(ans)" to see all properties, and "an

See Also

More About

. “Models with Tunable Coefficients” on page 1-19

. “Tunable Low-Pass Filter” on page 2-78

. “Create Tunable Second-Order Filter” on page 2-80

. “Control System with Tunable Components” on page 2-84

2-83

2 Model Creation

Control System with Tunable Components

2-84

This example shows how to create a tunable model of the control system in the following
illustration.

r—= F(s) C(s) Gis) =y

5(s)

The plant response is G(s) = 1/(s + 1)?. The model of sensor dynamics is S(s) = 5/(s + 4).
The controller C is a tunable PID controller, and the prefilter F = a/(s + a) is a low-pass

filter with one tunable parameter, a.

Create models representing the plant and sensor dynamics. Since the plant and sensor
dynamics are fixed, represent them using numeric LTI models zpk and tf.

Zpk([]l[-ll-l]ll);
tf(5,[1 41);

G
S

Create a tunable representation of the controller C.
C = tunablePID('C','PID');

Cis a tunablePID object, which is a Control Design Block with a predefined
proportional-integral-derivative (PID) structure.

Create a model of the filter F = a/(s + a) with one tunable parameter.

a
F

realp('a',10);
tf(a,[1 al);

a is a realp (real tunable parameter) object with initial value 10. Using a as a coefficient
in tf creates the tunable genss model object F.

Connect the models together to construct a model of the closed-loop response from r to y.

T feedback (G*C,S)*F

T

See Also

Generalized continuous-time state-space model with 1 outputs, 1 inputs, 5 states, an

C: Parametric PID controller, 1 occurrences.
a: Scalar parameter, 2 occurrences.

Type

T is a genss model object. In contrast to an aggregate model formed by connecting only
Numeric LTI models, T keeps track of the tunable elements of the control system. The
tunable elements are stored in the Blocks property of the genss model object.

Display the tunable elements of T.
T.Blocks

struct with fields:
[1x1 tunablePID]
[1x1 realp]

ans

v Ol

You can use tuning commands such as systune to tune the free parameters of T to meet
design requirements you specify.

See Also

Related Examples

. “Tunable Low-Pass Filter” on page 2-78

. “Create Tunable Second-Order Filter” on page 2-80

. “Create State-Space Model with Both Fixed and Tunable Parameters” on page 2-82

More About
. “Models with Tunable Coefficients” on page 1-19

2-85

ss(T)" to see the current value, "get(T)" to see all properties, and "T.Blocks" -

2 Model Creation

Control System with Multichannel Analysis Points

2-86

This example shows how to insert multichannel analysis points in a generalized state-
space model of a MIMO control system.

Consider the following two-input, two-output control system.

Py CLL_

F D G =)
Py Cy v

The plant G has two inputs and two outputs. Therefore, the line marked y in the block
diagram represents two signals, y(1) and y(2). Similarly, r and e each represent two
signals.

Suppose you want to create tuning requirements or extract responses that require
injecting or measuring signals at the locations L and V. To do so, create an
AnalysisPoint block and include it in the closed-loop model of the control system as
shown in the following illustration.

p [, AP
L[, |- L R
r D G »y

' Py Sl "

To create a model of this system, first create the numeric LTI models and control design
blocks that represent the plant and controller elements. D is a tunable gain block, and
C L and C_V are tunable PI controllers. Suppose the plant model is the following:

87.8 -86.4
108.2 -109.6

_ 1
~ 755 +1

G(s)

tf('s');
[87.8 -86.4 ; 108.2 -109.6]1/(75%s+1);

Control System with Multichannel Analysis Points

tunableGain('Decoupler’,eye(2));
tunablePID('C L', 'pi');
tunablePID('C V', 'pi');

O 0o
<r.l

Create an AnalysisPoint block that bundles together the L and V channels.

AP_1 = AnalysisPoint('AP 1',2)

AP 1 =

Multi-channel analysis point at locations:
AP 1(1)
AP 1(2)

Type "ss(AP 1)" to see the current value and "get(AP 1)" to see all properties.
For convenience, rename the channels to match the corresponding signals.
AP 1.Location = {'L"';'V'}
AP 1 =
Multi-channel analysis point at locations:
y
Type "ss(AP_1)" to see the current value and "get(AP_1)" to see all properties.

The following diagram illustrates the input names, output names, and channel names
(locations) in the block AP 1.

AP i

(T
k=
AP 1.u AR 1.y

—F—@——-—

The input and output names of the AnalysisPoint block are distinct from the channel
names. Use the channel names to refer to the analysis-point locations when extracting
responses or defining design goals for tuning. You can use the input and output names
AP _1.uand AP_1.y, for example, when interconnecting blocks using the connect
command.

2-87

2 Model Creation

You can now build the closed-loop model of the control system. First, join all the plant and
controller blocks along with the first AnalysisPoint block.

GC = G*AP_1*append(C L,C V)*D;
Then, close the feedback loop. Recall that GC has two inputs and outputs.
CL = feedback(GC,eye(2));

You can now use the analysis points for analysis or tuning. For example, extract the SISO
closed-loop transfer function from 'L"' to the first output. Assign a name to the output so
you can reference it in analysis functions. The software automatically expands the
assigned name 'y"' to the vector-valued output signals {y(1),y(2)}.

CL.OQutputName = 'y';

TLyl = getIOTransfer(CL,'L"',"y(1)");
bodeplot(TLyl);

2-88

See Also

Magnitude (dB)

Phase (deq)

-20

Bode Diagram

From: L To:y(1)

40

201

90 ———

45

See Also

AnalysisPoint

More About

102 1072
Frequency (rad/s)

107

. “Mark Signals of Interest for Control System Analysis and Design” on page 2-90

2-89

2 Model Creation

Mark Signals of Interest for Control System Analysis and
Design

2-90

Analysis Points

Whether you model your control system in MATLAB or Simulink, use analysis points to
mark points of interest in the model. Analysis points allow you to access internal signals,
perform open-loop analysis, or specify requirements for controller tuning. In the block
diagram representation, an analysis point can be thought of as an access port to a signal
flowing from one block to another. In Simulink, analysis points are attached to the
outports of Simulink blocks. For example, in the following model, the reference signal, r,
and the control signal, u, are analysis points that originate from the outputs of the
setpoint and C blocks respectively.

10
- Flis) > > [
r u 2432410
setpoint C G ¥

Each analysis point can serve one or more of the following purposes:

* Input — The software injects an additive input signal at an analysis point, for
example, to model a disturbance at the plant input.

* Output — The software measures the signal value at a point, for example, to study the
impact of a disturbance on the plant output.

* Loop Opening — The software inserts a break in the signal flow at a point, for
example, to study the open-loop response at the plant input.

You can apply these purposes concurrently. For example, to compute the open-loop
response from u to y, you can treat u as both a loop opening and an input. When you use
an analysis point for more than one purpose, the software applies the purposes in this
sequence: output measurement, then loop opening, then input.

Mark Signals of Interest for Control System Analysis and Design

k analvsis point

Using analysis points, you can extract open-loop and closed-loop responses from a control
system model. For example, suppose T represents the closed-loop system in the model
above, and u and y are marked as analysis points. T can be either a generalized state-
space model or an slLinearizer or slTuner interface to a Simulink model. You can
plot the closed-loop response to a step disturbance at the plant input with the following
commands:

Tuy = getIOTransfer(T,'u','y');
stepplot(Tuy)

Analysis points are also useful to specify design requirements when tuning control

systems with the systune command. For example, you can create a requirement that
attenuates disturbances at the plant input by a factor of 10 (20 dB) or more.

Req = TuningGoal.Rejection('u',10);

Specify Analysis Points for MATLAB Models

Consider an LTI model of the following block diagram.

— % Flis) 1]
r u 243410

setpoint

Y
Y

G ¥

[}

2-91

2 Model Creation

2-92

tf(10,[1 3 10]);
pid(0.2,1.5);

G
C
T feedback(G*C,1);

With this model, you can obtain the closed-loop response from r to y. However, you
cannot analyze the open-loop response at the plant input or simulate the rejection of a
step disturbance at the plant input. To enable such analysis, mark the signal u as an
analysis point by inserting an AnalysisPoint block between the plant and controller.

AP = AnalysisPoint('u');
T = feedback(G*AP*C,1);
T.OutputName = 'y';

The plant input, u, is now available for analysis.

In creating the model T, you manually created the analysis point block AP and explicitly
included it in the feedback loop. When you combine models using the connect command,
you can instruct the software to insert analysis points automatically at the locations you
specify. For more information, see connect.

Specify Analysis Points for Simulink Models

In Simulink, you can mark analysis points either explicitly in the block diagram, or
programmatically using the addPoint command for slLinearizer or slTuner
interfaces.

To mark an analysis point explicitly in the model, right-click a signal and, under Linear
Analysis Points, select an analysis point type.

Mark Signals of Interest for Control System Analysis and Design

Emor

Signal

Ini Ourt1

Controller

Copyright 2002-2006

A") h . H
% Cut Ctrl+X
Hy Copy Ctrl+C
Paste Ctrl+V
Delete Del

Highlight Signal to Source
Highlight Signal to Destination
Remove Highlighting Ctrl+Shift+H

Format 3

Add Conditional Breakpoint
Show Value Label of Selected Port

Signal & Scope Manager...

Open Viewer

Create & Connect Viewer 3
Connect To Viewer

Disconnect Viewer

Delete Viewer

Linear Analysis Points %b

Signal Hierarchy

Properties

£ e
- X~

EdEpE

®

Open-loep Input
Open-loop Qutput
Leop Transfer
Loop Break

Input Perturbation
Output Measurement
Sensitivity

Complementary Sensitivity
Trim Output Constraint

Help Me Select...

You can select any of the following closed-loop analysis point types, which are equivalent

within an slLinearizer or slTuner interface; that is, they are treated the same way by
analysis functions, such as getIOTransfer, and tuning goals, such as
TuningGoal.StepTracking.

2-93

2 Model Creation

2-94

* Input Perturbation

* Output Measurement

* Sensitivity

* Complementary Sensitivity

If you want to introduce a permanent loop opening at a signal as well, select one of the
following open-loop analysis point types:

* Open-Loop Input

* Open-Loop Output

* Loop Transfer

* Loop Break

When you define a signal as an open-loop point, analysis functions such as
getIOTransfer always enforce a loop break at that signal during linearization. All open-
loop analysis point types are equivalent within an slLinearizer or slTuner interface.
For more information on how the software treats loop openings during linearization, see
“How the Software Treats Loop Openings” (Simulink Control Design).

When you create an slLinearizer or slTuner interface for a model, any analysis

points defined in the model are automatically added to the interface. If you defined an

analysis point using:

* A closed-loop type, the signal is added as an analysis point only.

* An open-loop type, the signal is added as both an analysis point and a permanent
opening.

To mark analysis points programmatically, use the addPoint command. For example,
consider the scdcascade model.

open_system('scdcascade')

Mark Signals of Interest for Control System Analysis and Design

d2

ul
"+ Plis) [—™ Pli=) » G2 + b G1 ——™ @ > [:]
r s el a? uz2 v2 ¥
satpoint o1 for] G2 51 yim
2
o (e—]ﬂﬂn[
White Moise
yim

To mark analysis points, first create an slTuner interface.

ST = slTuner('scdcascade');

To add a signal as an analysis point, use the addPoint command, specifying the source
block and port number for the signal.

addPoint (ST, 'scdcascade/C1',1);

If the source block has a single output port, you can omit the port number.
addPoint (ST, 'scdcascade/G2");

For convenience, you can also mark analysis points using the:

* Name of the signal.

addPoint (ST, 'y2');
* Combined source block path and port number.

addPoint (ST, 'scdcascade/C1/1")
* End of the full source block path when unambiguous.

addPoint (ST, 'G1/1")

You can also add permanent openings to an slLinearizer or slTuner interface using
the addOpening command, and specifying signals in the same way as for addPoint. For

2-95

2 Model Creation

more information on how the software treats loop openings during linearization, see
“How the Software Treats Loop Openings” (Simulink Control Design).

addOpening (ST, 'y1lm');

You can also define analysis points by creating linearization I/O objects using the linio
command.

io(1) linio('scdcascade/C1l',1, "input');
io(2) linio('scdcascade/Gl',1, 'output');
addPoint (ST, i0);

As when you define analysis points directly in your model, if you specify a linearization I/O

object with:

* A closed-loop type, the signal is added as an analysis point only.

* An open-loop type, the signal is added as both an analysis point and a permanent
opening.

When you specify response I/Os in a tool such as Linear Analysis Tool or Control System
Tuner, the software creates analysis points as needed.

Refer to Analysis Points for Analysis and Tuning

Once you have marked analysis points, you can analyze the response at any of these
points using the following analysis functions:
* getIOTransfer — Transfer function for specified inputs and outputs

* getLoopTransfer — Open-loop transfer function from an additive input at a
specified point to a measurement at the same point

* getSensitivity — Sensitivity function at a specified point

+ getCompSensitivity — Complementary sensitivity function at a specified point
You can also create tuning goals that constrain the system response at these points. The
tools to perform these operations operate in a similar manner for models created at the
command line and models created in Simulink.

To view the available analysis points, use the getPoints function. You can view the
analysis for models created:

2-96

Mark Signals of Interest for Control System Analysis and Design

For closed-loop models created at the command line, you can also use the model input

At the command line:
In Simulink:

and output names when:

Amplitude

Computing a closed-loop response.
ioSys = getIOTransfer(T,'u','y');
stepplot(ioSys)

Step Response

From:u To:y

1 T T T T T T T T

0.8

0.6

[
=

o
[

Time (seconds)

Computing an open-loop response.

loopSys = getLoopTransfer(T,'u',-1);
bodeplot(loopSys)

o

2-97

2 Model Creation

2-98

Bode Diagram

From:u To:u

/

/

Magnitude (dB)
r

-225 — :
10 10¢ 10" 107
Frequency (rad/s)

* Creating tuning goals for systune.
R = TuningGoal.Margins('u',10,60);

Use the same method to refer to analysis points for models created in Simulink. In
Simulink models, for convenience, you can use any unambiguous abbreviation of the
analysis point names returned by getPoints.

ioSys = getIOTransfer (ST, 'ul','yl');
sensG2 = getSensitivity(ST,'G2"');
R = TuningGoal.Margins('ul',10,60);

Finally, if some analysis points are vector-valued signals or multichannel locations, you
can use indices to select particular entries or channels. For example, suppose u is a two-
entry vector in a closed-loop MIMO model.

Mark Signals of Interest for Control System Analysis and Design

Amplitude

To: yi2)

To: w1}

G ss([-1 0.2;0 -2],[1 0;0.3 1],eye(2),0);
C pid(0.2,0.5);

AP = AnalysisPoint('u',2);

T

T

= feedback(G*AP*C,eye(2));
.OutputName = 'y';

You can compute the open-loop response of the second channel and measure the impact

of a disturbance on the first channel.
L = getLoopTransfer(T, 'u(2)',-1);
stepplot(getIOTransfer(T, 'u(1l)"','y"))

Step Response
From: u(1)

0.6 T T
A

04H

0.2

1

u.us}l \\

0 5 10 15 20 25
Time (seconds)

When you create tuning goals in Control System Tuner, the software creates analysis

points as needed.

2-99

2 Model Creation

See Also
AnalysisPoint | getIOTransfer | getPoints

More About

. “Control System with Multichannel Analysis Points” on page 2-86
. “Mark Analysis Points in Closed-Loop Models” on page 4-13

2-100

Model Arrays

Model Arrays

What Are Model Arrays?

In many applications, it is useful to consider collections of multiple model objects. For
example, you may want to consider a model with a parameter that varies across a range
of values, such as

sysl = tf(1, [1 1 11);
sys2 = tf(1, [1 1 2]);
sys3 = tf(1, [1 1 31);

and so on. Model arrays are a convenient way to store and analyze such a collection.
Model arrays are collections of multiple linear models, stored as elements in a single
MATLAB array.

For all models collected in a single model array, the following attributes must be the
same:

* The number of inputs and outputs

* The sample time Ts

* The time unit TimeUnit

Uses of Model Arrays

Uses of model arrays include:

* Representing and analyzing sensitivity to parameter variations
* Validating a controller design against several plant models

* Representing linear models arising from the linearization of a nonlinear system at
several operating points

* Storing models obtained from several system identification experiments applied to one
plant

Using model arrays, you can apply almost all of the basic model operations that work on
single model objects to entire sets of models at once. Functions operate on arrays model
by model, allowing you to manipulate an entire collection of models in a vectorized

fashion. You can also use analysis functions such as bode, nyquist, and step to model

2-101

2 Model Creation

arrays to analyze multiple models simultaneously. You can access the individual models in

the collection through MATLAB array indexing.

Visualizing Model Arrays

To visualize the concept of a model array, consider the set of five transfer function models
shown below. In this example, each model has two inputs and two outputs. They differ by

parameter variations in the individual model components.

1.1 1.3 111 1.15 1.09
0
s+1 s3i1 0 712 0 s+13 ° s+1d 0
1
0 _1 _1 _1 _1
s+5 O 353 0 35a 0 58 O 358
- e -
' This LTI o rroy e mbodies o
:' 1-by-5 It of models.
””””” W
e A
[4y . I3
o ||/
| L ’ D.6| |4
:] 11 r
11 45| 4 |A54]]
s5+1 o~ : o
1 :52)
0 5+5 d Eachelement of the LTl arroy
E is 0 model.

2-102

Just as you might collect a set of two-by-two matrices in a multidimensional array, you can
collect this set of five transfer function models as a list in a model array under one
variable name, say, sys. Each element of the model array is a single model object.

Model Arrays

Visualizing Selection of Models From Model Arrays

The following illustration shows how indexing selects models from a one-dimensional
model array. The illustration shows a 1-by-5 array sysa of 2-input, 2-output transfer
functions.

sysa(2,2,3) selecks
the [2,2) entry of the
third model in the arroy.

sysa(:,:,3) selecs the third mod el inthe arroy.

The following illustration shows selection of models from the two-dimensional model

array m2d.

Eoch entryin this 2-by-3 arroy of
mod els is o two-output, one-input

tronsfer function.

/
f
* I
m2d(:;,1,1) m2d(::1,2) m2d[::,1,3)

m2dl::,2,1) m2dl::,22) m2d(:,:,2,3) m2d(:,:,1,3) extrocts the modelin
the [1,3) posifion of the orroy.
3.4 3.45
+28 + 28

3.86
s+20
7.23

{S

.27

S}

[s

732

11

2-103

2 Model Creation

See Also

Related Examples

. “Query Array Size and Characteristics” on page 2-108
. “Select Models from Array” on page 2-105
. “Model Array with Variations in Two Parameters” on page 9-6

2-104

Select Models from Array

Select Models from Array

This example shows how to select individual models or sets of models from a model array
using array indexing.

1

2

Load the transfer function array m2d into the MATLAB workspace.

load LTIexamples m2d

(Optional) Plot the step response of m2d.

step(m2d)

Amplituce
-
N

To: Out2)

Step Response
T T

05 1 15
Time [seconds)

25

The step response shows that m2d contains six one-input, two-output models. The
step command plots all of the models in an array on a single plot.

(Optional) Examine the dimensions of m2d.

arraydim = size(m2d)

This command produces the result:

arraydim =

2

2-105

2 Model Creation

2-106

* The first entries of arraydim, 2 and 1, show that m2d is an array of two-output,
one-input transfer functions.

* The remaining entries in arraydim give the array dimensions of m2d, 2-by-3.

In general, the dimensions of a model array are [Ny,Nu,S1,...,Sk]. Ny and Nu are
the numbers of outputs and inputs of each model in the array. S1, .. .,Sk are the
array dimensions. Thus, Si is the number of models along the ith array dimension.

Select the transfer function in the second row, first column of m2d.

To do so, use MATLAB array indexing.

sys = m2d(:,:,2,1)

Tip You can also access models using single index referencing of the array
dimensions. For example,

sys = m2d(:,:,4)

selects the same model as m2d(:,:,2,1).

Select the array of subsystems from the first input to the first output of each model in
m2d.

mll = m2d(1,1,:,:)
(Optional) Plot the step response of m11.

step(mll)

See Also

Step Response

Amplitude

L L L L
0 0.3 1 1.3 2 25
Time [geconds)

The step response shows that m11 is an array of six single-input, single-output (SISO)
models.

Note For frequency response data (FRD) models, the array indices can be followed
by the keyword ' frequency' and some expression selecting a subset of the
frequency points, as in:

sys(outputs,inputs,nl, ..., nk, 'frequency',SelectedFreqs)

See Also

More About

. “Model Arrays” on page 2-101
. “Query Array Size and Characteristics” on page 2-108

2-107

2 Model Creation

Query Array Size and Characteristics

2-108

This example shows how to query the size of model arrays, including the number of inputs
and outputs of the models in the array, and the array dimensions. It also shows how to
query characteristics of the models in the array, such as stability.

Array Size

Model arrays have two different sets of dimensions, the I/O dimensions and the array
dimensions. The I/O dimensions are the numbers of inputs and outputs of the models in
the array. (Each model in an array must have the same I/O dimensions.) The array
dimensions are the dimensions of the array itself. Load a saved model array and query its
dimensions.

load(fullfile(matlabroot, 'examples', 'control', 'queryexample.mat'), 'sysarr')
size(sysarr)

2x4 array of state-space models.
Each model has 3 outputs, 1 inputs, and 3 states.

When you use the size command on a model array with no output argument, the display
shows the two sets of dimensions.

To obtain the array dimensions as a numeric array, use size with an output argument.

dims size(sysarr)

dims = Ix4

The first two entries in dims are the I/O dimensions of the models in sysarr, which each
have three outputs and one input. The remaining entries in dims are the dimensions of
the array itself. Thus, sysarr is a 2-by-4 array of models.

To query the number of dimensions in the array, rather than the values of those
dimensions, use ndims.

dims

ndims(sysarr)

dims 4

Query Array Size and Characteristics

In this case, sysarr has 4 = 2 + 2 dimensions: The I/O dimensions (outputs and inputs),
and the array dimensions. Query the I/O dimensions alone using the iosize command.

ios iosize(sysarr)

ios = Ix2

Query the total number of models in the array.

N

nmodels(sysarr)
N =28
Because sysarr is a 2-by-4 array of models, this command returns a value of 2 x 4 = 8.

Characteristics of Models in the Array

Query commands such as isproper and isstable work on model arrays. For example,
query whether the models in sysarr are stable.

Bsiso isstable(sysarr)

Bsiso = logical

1

By default, isstable returns 1 (true) if all of the models in the array are stable. The
commands returns 0 (false) if one or more of the models is not stable. To perform an
element-by-element query of a model array, use the 'elem' option.

Bsiso = isstable(sysarr, 'elem')

Bsiso = 2x4 logical array

Now isstable returns an array of Boolean values. The dimensions of this array match
the array dimensions of sysarr. Each entry in the array Bsiso indicates whether the

2-109

2 Model Creation

corresponding model of sysarr is stable. The 'elem' option works similarly for many
query commands.

See Also

More About

. “Model Arrays” on page 2-101
. “Select Models from Array” on page 2-105

2-110

Linear Parameter-Varying Models

Linear Parameter-Varying Models

What are Linear Parameter-Varying Models?

A linear parameter-varying (LPV) system is a linear state-space model whose dynamics
vary as a function of certain time-varying parameters called scheduling parameters. In
MATLAB, an LPV model is represented in a state-space form using coefficients that are
parameter dependent.

Mathematically, an LPV system is represented as:

dx(t) = A(p)x(t) + B(p)u(t)

y(t) = C(p)x(t) + D(p)u(t) (2-1)
x(0) = xg
where

are the inputs

u(t)
* y(t) the outputs
x(t) are the model states with initial value x0

* dx(t) is the state derivative vector x for continuous-time systems and the state update
vector x(t + AT) for discrete-time systems. AT is the sample time.

* A(p),B(p),C(p) and D(p) are the state-space matrices parameterized by the
scheduling parameter vector p.

* The parameters p = p(t) are measurable functions of the inputs and the states of
the model. They can be a scalar quantity or a vector of several parameters. The set of
scheduling parameters define the scheduling space over which the LPV model is
defined.

Grid-Based LPV Model

A common way of representing LPV models is as an interpolated array of linear state-
space models. A certain number of points in the scheduling space are selected, usually
forming a regular grid on page 2-113. An LTT system is assigned to each point,
representing the dynamics in the local vicinity of that point. The dynamics at scheduling
locations in between the grid points is obtained by interpolation of LTI systems at
neighboring points.

2-111

2 Model Creation

2-112

For example, the aerodynamic behavior of an aircraft is often scheduled over a grid of
incidence angle (a) and wind speed (V) values. For each scheduling parameter, a range of
values is chosen, such as a = 0:5:20 degrees, V = 700:100:1400 m/s. For each
combination of (a,V) values, a linear approximation of the aircraft behavior is obtained.
The local models are connected as shown in the following figure:

Local sub-model
LTI fe, W) —

—_— F_

'/ >,

Each donut represents a local LTI model, and the connecting curves represent the
interpolation rules. The abscissa and ordinate of the surface are the scheduling
parameters (o, V).

This form is sometimes called the grid-based LPV representation. This is the form used by
the LPV System block. For meaningful interpolations of system matrices, all the local
models must use the same state basis.

Affine Form of LPV Model

The LPV system representation can be extended to allow offsets in dx, x, u and y
variables. This form is known as affine form of the LPV model. Mathematically, the
following represents an LPV system:

Linear Parameter-Varying Models

dx(t) = A(p)X(t) + B(p)u(t) + (dx(p) = A(p)X(p) = B(P)(p))

y(t) = C(p)x(t) + D(p)u(t) + (¥(p) = C(p)x(p) — D(p)u(p)) (2-2)
x(0) = xg

dx(p), X(p), (p), ¥(p)are the offsets in the values of dx(t), x(t), u(t) and y(t)
at a given parameter value p = p(t).

To obtain such representations of the linear system array, linearize a Simulink model over
a batch of operating points (see “Batch Linearization” (Simulink Control Design).) The
offsets correspond to the operating points at which you linearized the model.

You can obtain the offsets by returning additional linearization information when calling
functions such as linearize or getIOTransfer. You can then extract the offsets using
getOffsetsForLPV. For an example, see “LPV Approximation of a Boost Converter
Model” (Simulink Control Design).

In the affine representation, the linear model at a given point p = p* in the scheduling
space is:

dAx(t, p*) = A(p*)Ax(t, p*) + B(p*)Au(t, p*)

Ay(t, p*) = C(p*)Ax(t, p*) + D(p*)Au(t, p*)
The states of this linear model are related to the states of the overall LPV model

(“Equation 2-2”) by Ax(t, p*) = x(t) — X(p*). Similarly, Ay(t, p*) = y(t) — y(p*) and
Au(t, p*) = u(t) — u(p*).

Regular vs. Irregular Grids

Consider a system that uses two scheduling parameters, a and . When a and j vary
monotonically, a regular grid is formed, as shown in the next figure. The state space array
contains a value at every combination of a and § values. Regular grid does not imply
uniform spacing between values.

2-113

2 Model Creation

31 —

94

When parameters co-vary, that is, a and 8 increase together, an irregular grid is formed.
The system array parameters are available only along the diagonal in the parameter
plane.

2-114

Linear Parameter-Varying Models

a

If certain samples are missing from an otherwise regular grid, the grid is considered to be
irregular.

2-115

2 Model Creation

2-116

a

Use Model Arrays to Create Linear Parameter-Varying Models

The array of state-consistent linear models that define an LPV model are represented by
an array of state-space model objects. For more information on model arrays, see “Model
Arrays”.

The system array size is equal to the grid size in scheduling space. In the aircraft
example, a takes 5 values in the 0-20 degrees range and V takes 8 values in the 700-1400
m/s range. If you define a linear model at every combination of (a,V) values (i.e., the grid
is regular), the grid size is 5-by-8. Therefore, the model array size must be 5-by-8.

The information about scheduling parameters is attached to the linear model array using
its SamplingGrid property. The value of the SamplingGrid property must be a
structure with as many fields as there are scheduling parameters. For each field, the
value must be set to all the values assumed by the corresponding variable in the
scheduling space.

For the aircraft example, you can define the SamplingGrid property as:

Alpha = 0:5:20;
V = 700:100:1400;

Linear Parameter-Varying Models

[Alpha Grid,V Grid] = ndgrid(Alpha, V);
linsysArray.SamplingGrid = struct('Alpha',Alpha Grid, 'V',V Grid);

Approximate Nonlinear Systems using LPV Models

In the same way as a linear model provides the approximation of system behavior at a
given operating condition, an LPV model provides the approximation of the behavior over
a span on operating conditions. A common approach for constructing the LPV model is by
batch trimming and linearization, followed by stacking the local models in a state-space
model array.

Note When obtaining linear models by linearization, do not reduce or alter the state
variables used by the models.

The operating region is usually of a high dimension because it consists of all the input and
state variables. Generating or interpolating local models in such high-dimensional spaces
is usually infeasible. A simpler approach is to use a small set of scheduling parameters as
a proxy for the operating space variables. The scheduling parameters are derived from
the inputs and state variables of the original system. You must choose the values carefully
so that for a fixed value of the scheduling parameters, the system behavior is
approximately linear. This approach is not always possible.

Consider a nonlinear system described by the following equations:

X1 =X} + X3
Xy = —2x1 — 3x9 + 2u
y= x1+2

Suppose you use p(t) = x; as a scheduling variable. At a given time instant t = t;, you
have:

x1 = 2x1(to)x1 + 2xo(to)x2 — X1(to)
Xy = —2x1 — 3xy + 2u
y= x1+2

Thus, the dynamics are linear (affine) in the neighborhood of a given value of x. The
approximation holds for all time spans and values of input u as long as of x does not

2-117

2 Model Creation

2-118

deviate much from its nominal value at sampling point t,. Note that scheduling on input u
or states x; or x, does not help locally linearize the system. Therefore, they are not good
candidates for scheduling parameters.

For an example of this approach, see “Approximating Nonlinear Behavior Using an Array
of LTI Systems” (Simulink Control Design).

Applications of Linear Parameter-Varying Models
Modeling Multimode Dynamics

You can use LPV models to represent systems that exhibit multiple modes (regimes) of
operation. Examples of such systems include colliding bodies, systems controlled by
operator switches, and approximations of systems affected by dry friction and hysteresis
effects. For an example, see “Using LTI Arrays for Simulating Multi-Mode Dynamics” on
page 2-120.

Proxy Modeling for Faster Simulations

This approach is useful for generating surrogate models that you can use in place of the
original system for enabling faster simulations, reducing memory footprint of target
hardware code, and hardware-in-loop (HIL) simulations. You can also use surrogate
models of this type for designing gain-scheduled controllers and for initializing the
parameter estimation tasks in Simulink. For an example of approximating a general
nonlinear system behavior by an LPV model, see “Approximating Nonlinear Behavior
Using an Array of LTI Systems” (Simulink Control Design).

LPV models can help speed up the simulation of physical component based systems, such
as those built using Simscape™ Multibody™ and Simscape Electrical™ Power Systems
software. For an example of this approach, see “LPV Approximation of a Boost Converter
Model” (Simulink Control Design).

See Also
LPV System | getOffsetsForLPV

More About
. “Using LTI Arrays for Simulating Multi-Mode Dynamics” on page 2-120

See Also

“Approximating Nonlinear Behavior Using an Array of LTI Systems” (Simulink
Control Design)

“LPV Approximation of a Boost Converter Model” (Simulink Control Design)

2-119

2 Model Creation

Using LTI Arrays for Simulating Multi-Mode Dynamics

2-120

This example shows how to construct a Linear Parameter Varying (LPV) representation of
a system that exhibits multi-mode dynamics.

Introduction

We often encounter situations where an elastic body collides with, or presses against, a
possibly elastic surface. Examples of such situations are:

* An elastic ball bouncing on a hard surface.

* An engine throttle valve that is constrained to close to no more than 90" using a hard
spring.

* A passenger sitting on a car seat made of polyurethane foam, a viscoelastic material.

In these situations, the motion of the moving body exhibits different dynamics when it is
moving freely than when it is in contact with a surface. In the case of a bouncing ball, the
motion of the mass can be described by rigid body dynamics when it is falling freely.
When the ball collides and deforms while in contact with the surface, the dynamics have
to take into account the elastic properties of the ball and of the surface. A simple way of
modeling the impact dynamics is to use lumped mass spring-damper descriptions of the
colliding bodies. By adjusting the relative stiffness and damping coefficients of the two
bodies, we can model the various situations described above.

Modeling Bounce Dynamics

Figure 1 shows a mass-spring-damper model of the system. Mass 1 is falling freely under
the influence of gravity. Its elastic properties are described by stiffness constant #1 and
damping coefficient £1. When this mass hits the fixed surface, the impact causes Mass 1
and Mass 2 to move downwards together. After a certain "residence time" during which
the Mass 1 deforms and recovers, it loses contact with Mass 2 completely to follow a
projectile motion. The overall dynamics are thus broken into two distinct modes - when
the masses are not in contact and when they are moving jointly.

Figure 1: Elastic body bouncing on a fixed elastic surface.

Using LTI Arrays for Simulating Multi-Mode Dynamics

The unstretched (load-free) length of spring attached to Mass 1 is @1, while that of Mass 2

is @2, The variables ¥1(f) and ¥2(?) denote the positions of the two masses. When the
masses are not in contact ("Mode 1"), their motions are governed by the following
equations:

U1]
maija + cati2 + ka2(y2 — az) mag
with initial conditions ¥1(0) = h1 #1(0) = 0 y2(0) = ha g2(0) = 0_hy is the height from

which Mass 1 is originally dropped. 12 = @2 is the initial location of Mass 2 which
corresponds to an unstretched state of its spring.

When Mass 1 touches Mass 2 ("Mode 2"), their displacements and velocities get
interlinked. The governing equations in this mode are:

maygh + el — y2) + Falin — y2 — o) g
maiiz + eatiz + ka2 — az) — eltn — 92) — k1(yn — 2 — ay) a2y
with #1lte) = w2lte) where t- is the time at which Mass 1 first touches Mass 2.

LPV Representation

The governing equations are linear and time invariant. However, there are two distinct
behavioral modes corresponding to different equations of motion. Both modes are
governed by sets of second order equations. If we pick the positions and velocities of the
masses as state variables, we can represent each mode by a 4th order state-space
equation.

In the state-space view, it becomes possible to treat the two modes as a single system
whose coefficients change as a function of a certain condition which determines which
mode is active. The condition is, of course, whether the two masses are moving freely or
jointly. Such a representation, where the coefficients of a linear system are parameterized
by an external but measurable parameter is called a Linear Parameter Varying (LPV)
model. A common representation of an LPV model is by means of an array of linear state-
space models and a set of scheduling parameters that dictate the rules for choosing the
correct model under a given condition. The array of linear models must all be defined
using the same state variables.

2-121

2 Model Creation

For our example, we need two state-space models, one for each mode of operation. We
also need to define a scheduling variable to switch between them. We begin by writing the
above equations of motion in state-space form.

Define values of masses and their spring constants.

ml = 7; % first mass (g)

kl = 100; % spring constant for first mass (g/s"2)

cl = 2; % damping coefficient associated with first mass (g/s)
m2 = 20; % second mass (g)

k2 = 300; % spring constant for second mass (g/s"2)

c2 = 5; % damping coefficient associated with second mass (g/s)
g = 9.81; % gravitational acceleration (m/s"2)

al = 12; % uncompressed lengths of spring 1 (mm)

a2 = 20; % uncompressed lengths of spring 2 (mm)

hl = 100; % initial height of mass ml (mm)

h2 = a2; % initial height of mass m2 (mm)

First mode: state-space representation of dynamics when the masses are not in contact.

All = [0 1; O O];

B11l = [0; -gl;

Cll = [1 0];

D11 = 0;

Al2 = [0 1; -k2/m2, -c2/m2];
B12 = [0; -g+(k2*a2/m2)];
Cl2 = [1 0];

D12 = 0;

Al = blkdiag(All, Al2);
Bl = [B11l; B12];

Cl1 = blkdiag(C1l1, C12);
D1 = [D11; D12];

sysl = ss(Al1,B1,C1,D1);
Second mode: state-space representation of dynamics when the masses are in contact.

A2 =10 1, 0, 0; ...
-k1/ml, -cl/ml, kl/ml, cl/ml;...

2-122

Using LTI Arrays for Simulating Multi-Mode Dynamics

0, 0, 0, 1; ...

kl/m2, cl/m2, -(k1+k2)/m2, -(cl+c2)/m2];
B2 = [0; -g+kl*al/ml; 0; -g+(k2/m2*a2)-(kl/m2*al)l;
C2=[1000; 0010];
D2 = [0;0];

sys2 = ss(A2,B2,C2,D2);
Now we stack the two models sys1 and sys?2 together to create a state-space array.
sys = stack(1l,sysl,sys2);

Use the information on whether the masses are moving freely or jointly for scheduling.
Let us call this parameter "FreeMove" which takes the value of 1 when masses are
moving freely and 0 when they are in contact and moving jointly. The scheduling
parameter information is incorporated into the state-space array object (sys) by using its
"SamplingGrid" property:

sys.SamplingGrid = struct('FreeMove',[1; 0]);

Whether the masses are in contact or not is decided by the relative positions of the two
masses; when ¥1 — ¥z = i1, the masses are not in contact.

Simulation of LPV Model in Simulink

The state-space array sys has the necessary information to represent an LPV model. We
can simulate this model in Simulink using the "LPV System" block from the Control
System Toolbox™'s block library.

Open the preconfigured Simulink model LPVBouncingMass.slx

open_system('LPVBouncingMass"')
open_system('LPVBouncingMass/Bouncing Mass Model', 'mask"')

2-123

2 Model Creation

2-124

.

Y

1] ;
LRV ¥ Damux >

par
Bouncing Mass Model
double

The block called "Bouncing Mass Model" is an LPV System block. Its parameters are
specified as follows:

» For "State-space array" field, specify the state-space model array sys that was created
above.

» For "Initial state" field, specify the initial positions and velocities of the two masses.
Note that the state vector is: [¥1: #1: #2. i12]. Specify its value as [h1 0 h2 0]'.

* Under the "Scheduling" tab, set the "Interpolation method" to "Nearest". This choice
causes only one of the two models in the array to be active at any time. In our
example, the behavior modes are mutually exclusive.

* Under the "Outputs" tab, uncheck all the checkboxes for optional output ports. We will
be observing only the positions of the two masses.

The constant block outputs a unit value. This serves as the input to the model and is
supplied from the first input port of the LPV block. The block has only one output port
which outputs the positions of the two masses as a 2-by-1 vector.

The second input port of the LPV block is for specifying the scheduling signal. As
discussed before, this signal represents the scheduling parameter "FreeMove" and takes
discrete values 0 (masses in contact) or 1 (masses not in contact). The value of this
parameter is computed as a function of the block's output signal. This computation is
performed by the blocks with cyan background color. We take the difference between the
two outputs (after demuxing) and compare the result to the unstretched length of spring
attached to Mass 1. The resulting Boolean result is converted into a double signal which
serves as the scheduling parameter value.

We are now ready to perform the simulation.

Using LTI Arrays for Simulating Multi-Mode Dynamics

open_system('LPVBouncingMass/Scope')
sim('LPVBouncingMass"')

4 = =] &3

File Tools View Simulation Help o
@ - <a® P =R I R I e I 7

Ready Sample based T=40.000

The yellow curve shows the position of Mass 1 while the magenta curve shows the
position of Mass 2. At the start of simulation, Mass 1 undergoes free fall until it hits Mass
2. The collision causes the Mass 2 to be displaced but it recoils quickly and bounces Mass
1 back. The two masses are in contact for the time duration where ¥1 — 42 = 1, When the
masses settle down, their equilibrium values are determined by the static settling due to
gravity. For example, the absolute location of Mass 1 is

ay +az —ml+g/kl — (m2 + ml) * g/k2 = 30.43mm.

2-125

2 Model Creation

2-126

Conclusions

This example shows how a Linear Parameter Varying model can be constructed by using
an array of state-space models and suitable scheduling variables. The example describes
the case of mutually exclusive modes, although a similar approach can be used in cases
where the dynamics behavior at a given value of scheduling parameters is influenced by
several linear models.

The LPV System block facilitates the simulation of parameter varying systems. The block
also supports code generation for various hardware targets.

Working with Linear Models

127

Data Manipulation

* “Store and Retrieve Model Data” on page 3-2
+ “Extract Model Coefficients” on page 3-6

* “Attach Metadata to Models” on page 3-9

* “Query Model Characteristics” on page 3-14
* “Customize Model Display” on page 3-17

3 Data Manipulation

Store and Retrieve Model Data

3-2

Model Properties

Model properties are the data fields that store all data about a dynamic system model.
Data stored in model properties includes model dynamics, such as transfer-function
coefficients, state-space matrices, and time delays. Model properties also let you specify
other model attributes such as sample time, channel names, and state names.

For information about the properties associated with each model type, see the
corresponding reference page, such as tf, pid, or ss.

Specify Model Properties at Model Creation

When you create a dynamic system model, the software sets all property values.
Properties that contain model dynamics are automatically set with the appropriate values.
Other properties are set to default values. (See model reference pages for information
about default property values.)

You can specify other values for model properties at model creation using the

Name, Value pair syntax of the model-creation command. In this syntax, you specify the
name of the property you want to set, followed by the value. You can set multiple property
values in one command. For example, assign a transport delay and input and output
names to a new transfer function model.

H = tf(1,[1 10], 'I0ODelay',6.5, 'InputName', 'torque', 'OutputName', 'velocity"')
H =
From input "torque" to output "velocity":
exp(-6.5*s) * 1
s + 10

Continuous-time transfer function.

Some property values are reflected in the model display, such as the input and output
names. You can use Name, Value pair syntax when creating any type of model.

Store and Retrieve Model Data

Examine and Change Properties of an Existing Model

Load an existing state-space (ss) model.

load(fullfile(matlabroot, 'examples', 'control', 'PadeApproximationl.mat'), 'sys"')
sys

Ssys =
A:
x1 X2
x1l -1.5 -0.1
x2 1 0
B:
ul
x1 1
X2 0
C:
x1 X2
yl 0.5 0.1
D:
ul
yl 0

(values computed with all internal delays set to zero)

OQutput delays (seconds): 1.5
Internal delays (seconds): 3.4

Continuous-time state-space model.

The display shows that sys is a state-space model, and includes some of the property
values of sys. To see all properties of sys, use the get command

get(sys)

A: [2x2 double]

B: [2x1 double]

C: [0.5000 0.1000]
D: 0

E

d

2 [
Scaled: 0

3-3

3 Data Manipulation

3-4

StateName: {2x1 cell}
StateUnit: {2x1 cell}
InternalDelay: 3.4000
InputDelay: 0
OutputDelay: 1.5000
Ts: 0
TimeUnit: 'seconds'
InputName: {''}
InputUnit: {''}
InputGroup: [1x1 struct]
OutputName: {''}
OQutputUnit: {''}
OutputGroup: [1x1 struct]
Notes: [0Ox1 string]
UserData: []
Name: "'
SamplingGrid: [1x1 struct]

Use dot notation to access the values of particular properties. For example, display the A
matrix of sys.

Amat sys.A

Amat = 2x2

-1.5000 -0.1000
1.0000 0

Dot notation also lets you change the value of individual model properties.

sys.InputDelay = 4.2;
sys.InputName = 'thrust’';
sys.OutputName = 'velocity';

When you must change multiple property values at the same time to preserve the validity
of the model, such as changing the dimensions of the state-space matrices, you can use
the set command. For example, create a 1-state state-space model, and then replace the
matrices with new values representing a 2-state model.

sys2 = rss(1);

Anew = [-2, 1; 0.5 0];
Bnew = [1; -1];

Cnew = [0, -0.4];

See Also

set(sys2,'A',Anew, 'B',Bnew, 'C',Cnew)

sys2
Sys2 =
A:

x1
x2

B:

x1
x2

C:

yl

D:

yl

x1 x2
0 -0.4

ul
0.3426

Continuous-time state-space model.

Changing certain properties, such as Ts or TimeUnit, can cause undesirable changes in
system behavior. See the property descriptions in the model reference pages for more

information.

See Also

Related Examples

. “Attach Metadata to Models” on page 3-9
. “Extract Model Coefficients” on page 3-6

3 Data Manipulation

Extract Model Coefficients

3-6

Functions for Extracting Model Coefficients

Control System Toolbox software includes several commands for extracting model
coefficients such as transfer function numerator and denominator coefficients, state-space
matrices, and proportional-integral-derivative (PID) gains.

The following commands are available for data extraction.

Command Result

tfdata Extract transfer function coefficients

zpkdata Extract zero and pole locations and system gain
ssdata Extract state-space matrices

dssdata Extract descriptor state-space matrices

frdata Extract frequency response data from frd model
piddata Extract parallel-form PID data

pidstddata Extract standard-form PID data

get Access all model property values

Extracting Coefficients of Different Model Type

When you use a data extraction command on a model of a different type, the software
computes the coefficients of the target model type. For example, if you use zpkdata on a
ss model, the software converts the model to zpk form and returns the zero and pole

locations and system gain.

Extract Numeric Model Data and Time Delay

This example shows how to extract transfer function numerator and denominator
coefficients using tfdata.

1 Create a first-order plus dead time transfer function model.

tf('s');
exp(-2.5%s)/(s+12);

S
H

Extract Model Coefficients

Extract the numerator and denominator coefficients.
[num,den] = tfdata(H,'v")

The variables num and den are numerical arrays. Without the 'v' flag, tfdata
returns cell arrays.

Note For SISO transfer function models, you can also extract coefficients using:

num
den

H.Numerator{1};
H.Denominator{1l};

Extract the time delay.
a Determine which property of H contains the time delay.

In a SISO tf model, you can express a time delay as an input delay, an output
delay, or a transport delay (I/O delay).

get(H)
Numerator: {[0 11}
Denominator: {[1 12]}
Variable: 's'
IODelay: O
InputDelay: 0
OQutputDelay: 2.5000
Ts: 0
TimeUnit: 'seconds'
InputName: {''}
InputUnit: {''}
InputGroup: [1x1 struct]
OQutputName: {''}
OQutputUnit: {''}
OutputGroup: [1x1 struct]
Notes: [0x1 string]
UserData: []
Name: "'
SamplingGrid: [1x1 struct]

The time delay is stored in the OutputDelay property.

b Extract the output delay.

delay = H.OQutputDelay;

3 Data Manipulation

3-8

Extract PID Gains from Transfer Function

This example shows how to extract PID (proportional-integral-derivative) gains from a
transfer function using piddata. You can use the same steps to extract PID gains from a
model of any type that represents a PID controller, using piddata or pidstddata.

1 Create a transfer function that represents a PID controller with a first-order filter on
the derivative term.

Czpk = zpk([-6.6,-0.7],[0,-2],0.2)
2 Obtain the PID gains and filter constant.

[Kp,Ki,Kd,Tf] = piddata(Czpk)

This command returns the proportional gain Kp, integral gain Ki, derivative gain Kd,
and derivative filter time constant Tf. Because piddata automatically computes the
PID controller parameters, you can extract the PID coefficients without creating a
pid model.

See Also

Related Examples
. “Attach Metadata to Models” on page 3-9

More About
. “Store and Retrieve Model Data” on page 3-2

Attach Metadata to Models

Attach Metadata to Models

Specify Model Time Units
This example shows how to specify time units of a transfer function model.
The TimeUnit property of the tf model object specifies units of the time variable, time

delays (for continuous-time models), and the sample time Ts (for discrete-time models).
The default time units is seconds.

Create a SISO transfer function model sys = 245—+2 with time units in milliseconds:
s“+3s+10

num = [4 21;

den = [1 3 101;

sys = tf(num,den, 'TimeUnit', 'milliseconds');

You can specify the time units of any dynamic system on page 1-10 in a similar way.

The system time units appear on the time- and frequency-domain plots. For multiple
systems with different time units, the units of the first system are used if the time and
frequency units in the “Toolbox Preferences Editor” on page 20-2 are auto.

Note Changing the TimeUnit property changes the system behavior. If you want to use
different time units without modifying system behavior, use chgTimeUnit.

Interconnect Models with Different Time Units

This example shows how to interconnect transfer function models with different time
units.

To interconnect models using arithmetic operations or interconnection commands, the
time units of all models must match.

1 Create two transfer function models with time units of milliseconds and seconds,
respectively.

tf([1 2]1,[1 2 3], 'TimeUnit', 'milliseconds"');
tf([4 2]1,[1 3 10]);

sysl
sys2

3-9

3 Data Manipulation

3-10

2 Change the time units of sys2 to milliseconds.

sys2 = chgTimeUnit(sys2, 'milliseconds');
3 Connect the systems in parallel.

Sys = sysl+sys2;

Specify Frequency Units of Frequency-Response Data Model

This example shows how to specify units of the frequency points of a frequency-response
data model.

The FrequencyUnit property specifies units of the frequency vector in the Frequency
property of the frd model object. The default frequency units are rad/TimeUnit, where
TimeUnit is the time unit specified in the TimeUnit property.

Create a SISO frequency-response data model with frequency data in GHz.

load AnalyzerData;
sys = frd(resp,freq, 'FrequencyUnit', 'GHz"');

You can independently specify the units in which you measure the frequency points and
sample time in the FrequencyUnit and TimeUnit properties, respectively. You can also
specify the frequency units of a genfrd in a similar way.

The frequency units appear on the frequency-domain plots. For multiple systems with
different frequency units, the units of the first system are used if the frequency units in
the “Toolbox Preferences Editor” on page 20-2 is auto.

Note Changing the FrequencyUnit property changes the system behavior. If you want
to use different frequency units without modifying system behavior, use chgFrequUnit.

Extract Subsystems of Multi-Input, Multi-Output (MIMO)
Models

This example shows how to extract subsystems of a MIMO model using MATLAB indexing
and using channel names.

Extracting subsystems is useful when, for example, you want to analyze a portion of a
complex system.

Attach Metadata to Models

Create a MIMO transfer function.

G2 = tf([1 2],[1 0]);
G = [G1,G2];

Extract the subsystem of G from the first input to all outputs.
Gsub = G(:,1);

This command uses MATLAB indexing to specify a subsystem as G(out,in), where out
specifies the output indices and in specifies the input indices.

Using channel names, you can use MATLAB indexing to extract all the dynamics relating
to a particular channel. By using this approach, you can avoid having to keep track of
channel order in a complex MIMO model.

Assign names to the model inputs.
G.InputName = {'temperature';'pressure'};
Because G has two inputs, use a cell array to specify the two channel names.

Extract the subsystem of G that contains all dynamics from the 'temperature' input to
all outputs.

Gt = G(:, 'temperature');

Gt is the same subsystem as Gsub.

Note When you extract a subsystem from a state-space (ss) model, the resulting state-
space model may not be minimal. Use sminreal to eliminate unnecessary states in the
subsystem.

Specify and Select Input and Output Groups

This example shows how to specify groups of input and output channels in a model object
and extract subsystems using the groups.

Input and output groups are useful for keeping track of inputs and outputs in complex
MIMO models.

3-11

3 Data Manipulation

3-12

Create a state-space model with three inputs and four outputs.

H = rss(3,4,3);
Group the inputs as follows:

* Inputs 1 and 2 in a group named controls
* OQutputs 1 and 3 to a group named temperature
* OQutputs 1, 3, and 4 to a group named measurements

T

.InputGroup.controls = [1 2];
.OutputGroup.temperature = [1 3];
.OutputGroup.measurements = [1 3 4];

I T

InputGroup and OutputGroup are structures. The name of each field in the
structure is the name of the input or output group. The value of each field is a vector
that identifies the channels in that group.

Extract the subsystem corresponding to the controls inputs and the temperature
outputs.

You can use group names to index into subsystems.

Hc = H('temperature', 'controls')

Hc is a two-input, two-output ss model containing the I/O channels from the
"controls' input to the 'temperature' outputs.

You can see the relationship between H and the subsystem Hc in this illustration.

Hc
|
] ——>
controls 5 temperature
<2—> H 4. §> ’
3—» — 4

See Also

See Also

Related Examples

. “Store and Retrieve Model Data” on page 3-2
. “Extract Model Coefficients” on page 3-6
. “Query Model Characteristics” on page 3-14

3-13

3 Data Manipulation

Query Model Characteristics

3-14

This example shows how to query model characteristics such as stability, time domain,
and number of inputs and outputs. You can use the techniques of this example on any type
of dynamic system model.

Load a saved state-space (ss) model.
load(fullfile(matlabroot, 'examples', 'control', 'queryexample.mat'),'T")
Query whether T has stable dynamics.

Bstab = isstable(T)

Bstab = logical
1

The isstable command returns 1 (true) if all system poles are in the open left-half
plane (for continuous-time models) or inside the open unit disk (for discrete-time models).
Otherwise, isstable command returns 0 (false). Here, the result shows that the model
is stable.

Query whether T has time delays.
Bdel

hasdelay(T)

Bdel = logical
1

The returned value, 1, indicates that T has a time delay. For a state-space model, time
delay can be stored as input delay, output delay, internal delay, or a combination. Use
get(T) to determine which properties of T hold the time delay, and use dot notation to
access the delay values. The hasInternalDelay command tells you whether there is
any internal delay.

Query whether T is proper.
Bprop = isproper(T)

Bprop = logical
1

See Also

The returned value indicates that the system has relative degree less than or equal to 0.
This is true of a SISO system when it can be represented as a transfer function in which
the degree of the numerator does not exceed the degree of the denominator.

Query the order of T.
N = order(T)
N=25

For a state-space model, order returns the number of states, which is 5 in this case. For
a tf or zpk model, the order is the number of states required for a state-space realization
of the system.

Query whether T is a discrete-time system.
Bdisc = isdt(T)
Bdisc = logical

1

The returned value indicates that T is a discrete-time model. Similarly, use isct to query
whether T is a continuous-time model.

Load a MIMO model and query the input/output dimensions.

load(fullfile(matlabroot, 'examples', 'control', 'queryexample.mat'), 'Tmimo")
ios = iosize(Tmimo)

ios = 1Ix2

7 4

In the resulting array, the number of outputs is first. Therefore, Tmimo has 4 inputs and 7
outputs.

See Also

isproper | isstable | size

3-15

3 Data Manipulation

Related Examples
. “Select Models from Array” on page 2-105

More About
. “Store and Retrieve Model Data” on page 3-2

3-16

Customize Model Display

Customize Model Display

Configure Transfer Function Display Variable

This example shows how to configure the MATLAB command-window display of transfer
function (tf) models.

You can use the same steps to configure the display variable of transfer function models
in factorized form (zpk models).

By default, tf and zpk models are displayed in terms of s in continuous time and z in
discrete time. Use the Variable property change the display variable to 'p' (equivalent
to's'), 'q' (equivalentto 'z"'), 'z”~-1',0r 'q~-1".

z-1

Create the discrete-time transfer function H(2) = ————
z°—32+2

with a sample time of 1 s.

H=tf([1l-11,[1 -3 2],0.1)

Sample time: 0.1 seconds
Discrete-time transfer function.

The default display variable is z.
2 Change the display variable to q™- 1.

H.Variable = 'g~-1'

Sample time: 0.1 seconds
Discrete-time transfer function.

3-17

3 Data Manipulation

When you change the Variab'le property, the software computes new coefficients
and displays the transfer function in terms of the new variable. The num and den
properties are automatically updated with the new coefficients.

Tip Alternatively, you can directly create the same transfer function expressed in terms
of 'q™-1".

H=tf([0 1 -1],[1 -3 2],0.1, 'Variable',6 'q™~-1");

For the inverse variables 'z"~-1' and 'q”™-1", tf interprets the numerator and
denominator arrays as coefficients of ascending powers of 'z~-1"' or 'q™~-1".

Configure Display Format of Transfer Function in Factorized
Form

This example shows how to configure the display of transfer function models in factorized
form (zpk models).

You can configure the display of the factorized numerator and denominator polynomials to
highlight:

* The numerator and denominator roots
* The natural frequencies and damping ratios of each root
* The time constants and damping ratios of each root

See the DisplayFormat property on the zpk reference page for more information about
these quantities.

1 Create a zpk model having a zero at s = 5, a pole at s = -10, and a pair of complex
poles at s = -3 £ 5i.

H

zpk(5,[-10,-3-5%1,-3+5%1],10)

H:

(s+10) (s™2 + 6s + 34)

Continuous-time zero/pole/gain model.

3-18

Customize Model Display

The default display format, ' roots"', displays the standard factorization of the
numerator and denominator polynomials.

Configure the display format to display the natural frequency of each polynomial root.

H.DisplayFormat = 'frequency'

-0.14706 (1-s/5)

(14s/10) (1 + 1.029(s/5.831) + (s/5.831)"2)
Continuous-time zero/pole/gain model.

You can read the natural frequencies and damping ratios for each pole and zero from
the display as follows:

* Factors corresponding to real roots are displayed as (1 - s/wg). The variable w is
the natural frequency of the root. For example, the natural frequency of the zero
of His 5.

» Factors corresponding to complex pairs of roots are displayed as 1 - 2{(s/wg) +
(s/wy)?. The variable w, is the natural frequency, and is the damping ratio of the
root. For example, the natural frequency of the complex pole pair is 5.831, and the
damping ratio is 1.029/2.

Configure the display format to display the time constant of each pole and zero.

H.DisplayFormat = 'time constant'

-0.14706 (1-0.2s)

(140.1s) (1 + 1.029(0.1715s) + (0.1715s5)"2)
Continuous-time zero/pole/gain model.

You can read the time constants and damping ratios from the display as follows:

» Factors corresponding to real roots are displayed as (7s). The variable T is the
time constant of the root. For example, the time constant of the zero of H is 0.2.

» Factors corresponding to complex pairs of roots are displayed as 1 - 2{(ts) + (ts)2.
The variable 7 is the time constant, and C is the damping ratio of the root. For

3-19

3 Data Manipulation

example, the time constant of the complex pole pair is 0.1715, and the damping
ratio is 1.029/2.

See Also
tf | zpk

Related Examples
. “Transfer Functions” on page 2-3

3-20

Model Interconnections

* “Why Interconnect Models?” on page 4-2

» “Catalog of Model Interconnections” on page 4-3

* “Numeric Model of SISO Feedback Loop” on page 4-6

* “Control System Model With Both Numeric and Tunable Components” on page 4-8
* “Multi-Loop Control System” on page 4-10

* “Mark Analysis Points in Closed-Loop Models” on page 4-13

+ “MIMO Control System” on page 4-18

+ “MIMO Feedback Loop” on page 4-21

* “How the Software Determines Properties of Connected Models” on page 4-26
* “Rules That Determine Model Type” on page 4-28

* “Recommended Model Type for Building Block Diagrams” on page 4-30

4 Model Interconnections

Why Interconnect Models?

Interconnecting models of components allows you to construct models of control systems.
You can conceptualize your control system as a block diagram containing multiple
interconnected components, such as a plant or a controller. Using model arithmetic or
interconnection commands, you combine models of each of these components into a
single model representing the entire block diagram.

For example, you can interconnect dynamic system models of a plant G(s), a controller
C(s), sensor dynamics S(s), and a filter F(s) to construct a single model that represents
the entire closed-loop control system in the following illustration:

+
r—> F(s) — C(s) — G(s) >y
S(s) |«
See Also
More About
. “Catalog of Model Interconnections” on page 4-3

4-2

Catalog of Model Interconnections

Catalog of Model Interconnections

Each type of block diagram connection corresponds to a model interconnection command
or arithmetic expression. The following tables summarize the block diagram connections
with the corresponding interconnection command and arithmetic expression.

Model Interconnection Commands

Block Diagram Connection Command Arithmetic
Expression
series(H1,H2) H2*H1
u—s| H1 — H2 >y
parallel(H1,H2) H1+H2
» H1
+
u— y
+
» H2
parallel(H1, -H2) H1-H2
» HI1
+
u— y
o H2
4 feedback(H1,H2) H1/(14H2*H1) (not
u H1 >y recommended)
H2
| N/A H1/H2 (division)
u— H2" — HIl —y

4-3

4 Model Interconnections

Block Diagram Connection Command Arithmetic
Expression
) N/A H1\H2 (left division)

u—{ H2 »HI " —y

n inv(H1) N/A
u—HI >y
W, - Z, 1ft(H1,H2,nu,ny) N/A

u y

7 H2 —W,

Arithmetic Operations

You can apply almost all arithmetic operations to dynamic system models, including those
shown below.

Operation Description

+ Addition

- Subtraction

& Multiplication

o & Element-by-element multiplication
/ Right matrix divide

\ Left matrix divide

inv Matrix inversion

Conjugate transposition. See ctranspose.

Transposition

4-4

See Also

Operation Description

~ Powers of a dynamic system model, as in the following syntax for
creating transfer functions:

tf('s');
25/(s”2 + 10*s + 25);

S
G

In some cases, you might obtain better results using model interconnection commands,
such as feedback or connect, instead of model arithmetic. For example, the command T
= feedback(H1,H2) returns better results than the algebraic expression T = H1/
(1+H2*H1). The latter expression duplicates the poles of H1, which inflates the model
order and might lead to computational inaccuracy.

See Also

connect | feedback | parallel | series

Related Examples

. “Numeric Model of SISO Feedback Loop” on page 4-6
. “Multi-Loop Control System” on page 4-10

. “MIMO Control System” on page 4-18

More About

. “How the Software Determines Properties of Connected Models” on page 4-26
. “Recommended Model Type for Building Block Diagrams” on page 4-30

4 Model Interconnections

Numeric Model of SISO Feedback Loop

This example shows how to interconnect numeric LTI models on page 1-13 representing
multiple system components to build a single numeric model of a closed-loop system,
using model arithmetic and interconnection commands.

4-6

Construct a model of the following single-loop control system.

r— F(s) — C(s)

+

Y

G(s) >y

A

S(s)

The feedback loop includes a plant G(s), a controller C(s), and a representation of sensor
dynamics, S(s). The system also includes a prefilter F(s).

1

Create model objects representing each of the components.

G = Zpk([]r['ll'l]ll);
C = pid(2,1.3,0.3,0.5);
S = tf(5,[1 4]1);
F=1tf(1,[1 1]);

The plant G is a zero-pole-gain (zpk) model with a double pole at s = -1. Model object
C is a PID controller. The models F and S are transfer functions.

Connect the controller and plant models.
H = G*C;

To combine models using the multiplication operator *, enter the models in reverse
order compared to the block diagram.

Tip Alternatively, construct H(s) using the series command:

H = series(C,G);

Construct the unfiltered closed-loop response T(s) = %

See Also

T = feedback(H,S);

Caution Do not use model arithmetic to construct T algebraically:

T = H/ (1+H*S)

This computation duplicates the poles of H, which inflates the model order and might
lead to computational inaccuracy.

4 Construct the entire closed-loop system response from r to y.
T_ry = T*F;

T ry is a Numeric LTI Model representing the aggregate closed-loop system. T ry does
not keep track of the coefficients of the components G, C, F, and S.

You can operate on T_ry with any Control System Toolbox control design or analysis
commands.

See Also

connect | feedback | parallel | series

Related Examples

. “Control System Model With Both Numeric and Tunable Components” on page 4-8
. “Multi-Loop Control System” on page 4-10
. “MIMO Control System” on page 4-18

More About

. “Catalog of Model Interconnections” on page 4-3

4 Model Interconnections

Control System Model With Both Numeric and Tunable
Components

4-8

This example shows how to create a tunable model of a control system that has both fixed
plant and sensor dynamics and tunable control components.

Consider the control system of the following illustration.

+

r—= F(s) C(s) Gis) -y

5(s)

Suppose that the plant response is G(s) = 1/(s + 1)2, and that the model of the sensor
dynamics is S(s) = 5/(s + 4). The controller C is a tunable PID controller, and the prefilter

F = a/(s + a) is a low-pass filter with one tunable parameter, a.

Create models representing the plant and sensor dynamics. Because the plant and sensor
dynamics are fixed, represent them using numeric LTI models.

Zpk([],[‘lr']-]:l);

G
S = tf(5,[1 4]);

To model the tunable components, use Control Design Blocks. Create a tunable
representation of the controller C.

C = tunablePID('C','PID");

Cis a tunablePID object, which is a Control Design Block with a predefined
proportional-integral-derivative (PID) structure.

Create a model of the filter F = a/(s + a) with one tunable parameter.

a
F

realp('a',10);
tf(a,[1 al);

a is a realp (real tunable parameter) object with initial value 10. Using a as a coefficient
in tf creates the tunable genss model object F.

See Also

Interconnect the models to construct a model of the complete closed-loop response from r
toy.

T feedback (G*C,S)*F

T =

Generalized continuous-time state-space model with 1 outputs, 1 inputs, 5 states, an
C: Parametric PID controller, 1 occurrences.
a: Scalar parameter, 2 occurrences.

Type "ss(T)" to see the current value, "get(T)" to see all properties, and "T.Blocks" -
T is a genss model object. In contrast to an aggregate model formed by connecting only

numeric LTI models, T keeps track of the tunable elements of the control system. The

tunable elements are stored in the Blocks property of the genss model object. Examine

the tunable elements of T.

T.Blocks

= struct with fields:
C: [1x1 tunablePID]
a: [1x1 realp]

ans

When you create a genss model of a control system that has tunable components, you
can use tuning commands such as systune to tune the free parameters to meet design
requirements you specify.

See Also
feedback | tunablePID

More About

. “Control Design Blocks” on page 1-16
. “Dynamic System Models” on page 1-10

4-9

4 Model Interconnections

Multi-Loop Control System

4-10

This example shows how to build an arbitrary block diagram by connecting models using
connect. The system is a Smith Predictor, the single-input, single-output (SISO) multi-
loop control system shown in the following block diagram.

u

Y

P >y

¥p Yy

F

For more information about the Smith Predictor, see “Control of Processes with Long
Dead Time: The Smith Predictor”.

The connect command lets you construct the overall transfer function from ys, to y. To
use connect, specify the input and output channel names of the components of the block
diagram. connect automatically joins ports that have the same name, as shown in the
following figure.

—» error
Bl B1
— connect (B1,B2) —>
—_—
_> _»
B2 error
EITor —| > B2

To build the closed loop model of the Smith Predictor system from ys, to y:

1 Create the components of the block diagram: the process model P, the predictor
model Gp, the delay model Dp, the filter F, and the PI controller C. Specify names for
the input and output channels of each model so that connect can automatically join
them to build the block diagram.

See Also

s = tf('s');

P = exp(-93.9*%s) * 5.6/(40.2*s+1);
P.InputName = 'u'; P.OutputName = 'y';

Gp = 5.6/(40.2%s+1);
Gp.InputName = 'u'; Gp.OutputName = 'yp';

Dp = exp(-93.9%*s);
Dp.InputName = 'yp'; Dp.OutputName = 'yl';

F = 1/(20*%s+1);
F.InputName = 'dy'; F.OutputName = 'dp';

C = pidstd(0.574,40.1);
C.Inputname = 'e'; C.OutputName = 'u';

2 Create the summing junctions needed to complete the block diagram.

suml = sumblk('e = ysp - ym');
sum2 = sumblk('ym = yp + dp');
sum3 = sumblk('dy =y - yl1');

The argument to sumblk is a formula that relates the input and output signals of the
summing junction. sumblk creates a summing junction with the input and output
signal names specified in the formula. For example, in suml, the formula 'e = ysp
- ym' specifies an output signal named e, which is the difference between input
signals named ysp and ym.

3 Assemble the complete model from y, to y.
T = connect(P,Gp,Dp,C,F,suml,sum2,sum3, 'ysp','y");

You can list the models and summing junctions in any order because connect
automatically interconnects them using their input and output channel names.

The last two arguments specify the input and output signals of the multi-loop control
structure. Thus, T is a ss model with input ysp and output y.

See Also

connect | sumblk

4-11

4 Model Interconnections

Related Examples

. “Control System Model With Both Numeric and Tunable Components” on page 4-8
. “MIMO Control System” on page 4-18
. “Mark Analysis Points in Closed-Loop Models” on page 4-13

More About

. “How the Software Determines Properties of Connected Models” on page 4-26

4-12

Mark Analysis Points in Closed-Loop Models

Mark Analysis Points in Closed-Loop Models

This example shows how to build a block diagram and insert analysis points at locations
of interest using the connect command. You can then use the analysis points to extract
various system responses from the model.

For this example, create a model of a Smith predictor, the SISO multiloop control system
shown in the following block diagram.

\r’u' - P

N,

Points marked by x are analysis points to mark for this example. For instance, if you want
to calculate the step response of the closed-loop system to a disturbance at the plant
input, you can use an analysis point at u. If you want to calculate the response of the
system with one or both of the control loops open, you can use the analysis points at yp or
dp.

To build this system, first create the dynamic components of the block diagram. Specify
names for the input and output channels of each model so that connect can
automatically join them to build the block diagram.

s = tf('s');

Process model
= exp(-93.9*%s) * 5.6/(40.2*s+1);
.InputName = 'u'

.OutputName = 'y';

-~

U U T o°

o°

Predictor model

Gp = 5.6/(40.2*s+1);
Gp.InputName = 'u';
Gp.OutputName = 'yp';

4-13

‘l Model Interconnections

% Delay model

Dp = exp(-93.9*s);
Dp.InputName = 'yp';
Dp.OutputName = 'y1';

% Filter

F =1/(20*s+1);
F.InputName = 'dy’;
F.OQutputName = 'dp';

PI controller
= pidstd(0.574,40.1);

.Inputname = 'e’;

.QutputName = 'u';

OO0 °

Create the summing junctions needed to complete the block diagram. (For more
information about creating summing junctions, see sumb1k).

suml = sumblk('e = ysp - ym');
sum2 = sumblk('ym = yp + dp');
sum3 = sumblk('dy =y - yl');

Assemble the complete model.

input = 'ysp';

output = 'y';

APS={IUI'Ide,IypI};

T = connect(P,Gp,Dp,C,F,suml,sum2,sum3,input,output,APs)
T:

Generalized continuous-time state-space model with 1 outputs, 1 inputs, 4 states, ant
AnalysisPoints : Analysis point, 3 channels, 1 occurrences.

Type "ss(T)" to see the current value, "get(T)" to see all properties, and "T.Blocks" -

When you use the APs input argument, the connect command automatically inserts an
AnalysisPoint block into the generalized state-space (genss) model, T. The
automatically generated block is named AnalysisPoints . The three channels of
AnalysisPoints correspond to the three locations specified in the APs argument to
the connect command. Use getPoints to see a list of the available analysis points in
the model.

getPoints(T)

4-14

Mark Analysis Points in Closed-Loop Models

Use these locations as inputs, outputs, or loop openings when you extract responses from
the model. For example, extract and plot the response at the system output to a step

disturbance at the plant input, u.

Tp = getIOTransfer(T,'u','y");

stepplot(Tp)
Step Response
From:u Tory
12 T T T T T T
17 {]
III
|
|
0.8 |' 1
@ I
=
=
= 067 |]
E
<
0.4r]
EE - | -
|| I
0 L : } L L s
0 50 100 150 200 250 300 350

Time (seconds)

4-15

4 Model Interconnections

Similarly, calculate the open-loop response of the plant and controller by opening both
feedback loops.

openings = {'dp','yp'};
L = getIOTransfer(T, 'ysp','y',openings);
bodeplot (L)

Bode Diagram

From:ysp To:y

— [
] —
T
|
f
i

[
T
!
f
i

et
T
f
i

Magnitude (dB)

[
T
I
i
i

i
[3]
=
T
|
|
|
|
|
|
|
|
|
i

FPhase (deq)

107!

=
=
[=]

Frequency (rad/s)

When you create a control system model, you can create an AnalysisPoint block
explicitly and assign input and output names to it. You can then include it in the input
arguments to connect as one of the blocks to combine. However, using the APs
argument to connect as illustrated in this example is a simpler way to mark points of
interest when building control system models.

4-16

See Also

See Also

AnalysisPoint | connect | sumblk

Related Examples
. “Control System with Multichannel Analysis Points” on page 2-86

More About
. “Mark Signals of Interest for Control System Analysis and Design” on page 2-90

4-17

4 Model Interconnections

MIMO Control System

This example shows how to build a MIMO control system using connect to interconnect
Numeric LTI models on page 1-13 and tunable Control Design Blocks on page 1-16.

Consider the following two-input, two-output control system.

pL CL L >

r D G >y

d o C, -

\ 4

The plant G is a distillation column with two inputs and two outputs. The two inputs are
the reflux L and boilup V. The two outputs are the concentrations of two chemicals,
represented by the vector signal y = [y;,)»]. You can represent this plant model as:

87.8 -86.4
108.2 —109.6

1

GS) = 75571

The vector setpoint signal r = [ry,,] specifies the desired concentrations of the two
chemicals. The vector error signal e represents the input to D, a static 2-by-2 decoupling
matrix. C; and Cy represent independent PI controllers that control the two inputs of G.

To create a two-input, two-output model representing this closed-loop control system:
1 Create a Numeric LTI model representing the 2-by-2 plant G.

tf('s', 'TimeUnit', 'minutes');

[87.8 -86.4 ; 108.2 -109.6]1/(75*s+1);

.InputName = {'L','V'};
.OutputName = 'y';

[N NNV

When you construct the closed-loop model, connect uses the input and output
names to form connections between the block diagram components. Therefore, you
must assign names to the inputs and outputs of the transfer function G in either of the
following ways: .

4-18

MIMO Control System

* You can assign input and output names to individual signals by specifying signal
names in a cell array, as in G. InputName = {'L','V'}

» Alternatively, you can use vector signal naming, which the software automatically
expands. For example, the command G.OutputName = 'y' assigns the names
'y(1) "' and 'y(2)' to the outputs of G.

Create tunable Control Design Blocks representing the decoupling matrix D and the
PI controllers C; and Cy,.

D = tunableGain('Decoupler',eye(2));

D.u = "'e';

D.y = {'pL","'pV'};

C L = tunablePID('C L','pi'); C L.TimeUnit = 'minutes';
CL.u="'"pL"'; CL.y="L";

C V = tunablePID('C V','pi'); C V.TimeUnit = 'minutes';
CV.u="pV'; CV.y ="'V";

Note u and y are shorthand notations for the InputName and OutputName
properties, respectively. Thus, for example, entering:

D.u
D.y

Iel;
{'pL",'pV'};

is equivalent to entering:

D.InputName = 'e';
D.QutputName = {'pL', 'pV'};

Create the summing junction.

The summing junction produces the error signals e by taking the difference between
rand y.

Sum = sumblk('e = r - y',2);

Sum represents the transfer function for the summing junction described by the
formula 'e = r - y'.The second argument to sumblk specifies that the inputs and
outputs of Sum are each vector signals of length 2. The software therefore
automatically assigns the signal names {'r(1)','r(2)"','y(1)"','y(2)'} to
Sum.InputName and {'e(1l)','e(2) "'} to Sum.OutputName.

4-19

4 Model Interconnections

4-20

4 Join all components to build the closed-loop system from r to y.

CLry = connect(G,D,C L,C V,Sum,'r','y"');

The arguments to the connect function include all the components of the closed-loop
system, in any order. connect automatically combines the components using the
input and output names to join signals.

The last two arguments to connect specify the output and input signals of the
closed-loop model, respectively. The resulting genss model CLry has two-inputs and
two outputs.

See Also

connect | sumblk

Related Examples

. “Control System Model With Both Numeric and Tunable Components” on page 4-8
. “Multi-Loop Control System” on page 4-10

. “MIMO Control System” on page 4-18

More About

. “Catalog of Model Interconnections” on page 4-3

MIMO Feedback Loop

MIMO Feedback Loop

This example shows how to obtain the closed-loop response of a MIMO feedback loop in
three different ways.

In this example, you obtain the response from Azref to Az of the MIMO feedback loop of
the following block diagram.

Autopilot Acrodyn =
e]
== Alphi fiha el a
= Much . Mach
- A Alpha
P Thust a
o | AgTef Fim = Fin Az -
Al -y

You can compute the closed-loop response using one of the following three approaches:

* Name-based interconnection with connect
* Name-based interconnection with feedback
* Index-based interconnection with feedback

You can use whichever of these approaches is most convenient for your application.

Load the plant Aerodyn and the controller Autopilot into the MATLAB® workspace.
These models are stored in the datafile MIMOfeedback.mat.

load(fullfile(matlabroot, 'examples', 'control', '"MIMOfeedback.mat"'))

Aerodyn is a 4-input, 7-output state-space (ss) model. Autopilot is a 5-input, 1-output
ss model. The inputs and outputs of both models names appear as shown in the block
diagram.

Compute the closed-loop response from Azref to Az using connect.

Tl = connect(Autopilot,Aerodyn, 'Azref', 'Az");

Warning: The following block inputs are not used: Rho,a,Thrust.

4-21

‘l Model Interconnections

4-22

Warning: The following block outputs are not used: Xe,Ze,Altitude.

The connect function combines the models by joining the inputs and outputs that have
matching names. The last two arguments to connect specify the input and output signals
of the resulting model. Therefore, T1 is a state-space model with input Azref and output
Az. The connect function ignores the other inputs and outputs in Autopilot and
Aerodyn.

Compute the closed-loop response from Azref to Az using name-based interconnection
with the feedback command. Use the model input and output names to specify the
interconnections between Aerodyn and Autopilot.

When you use the feedback function, think of the closed-loop system as a feedback
interconnection between an open-loop plant-controller combination L and a diagonal
unity-gain feedback element K. The following block diagram shows this interconnection.

L
i . Aerodyn
i Autopilot ¥ -
: =
o) Alpha o —T 2e -
E = Mach . Marh
o A Adphal
: q O Theust q
o et Al Fim #=| Fin Az -0
H A il -
K

L = series(Autopilot,Aerodyn, 'Fin');

FeedbackChannels = {'Alpha', 'Mach','Az','q'};
K = ss(eye(4), 'InputName', FeedbackChannels,...
"OutputName', FeedbackChannels);

T2 = feedback(L,K, 'name',+1);

The closed-loop model T2 represents the positive feedback interconnection of L and K.
The 'name' option causes feedback to connect L and K by matching their input and
output names.

MIMO Feedback Loop

T2 is a 5-input, 7-output state-space model. The closed-loop response from Azref to Az is
T2('Az', 'Azref').

Compute the closed-loop response from Azref to Az using feedback, using indices to
specify the interconnections between Aerodyn and Autopilot.

eries(Autopilot,Aerodyn,1,4);
s(eye(4));
3 = feedback(L,K,[1 2 3 4],[4 3 6 5],+1);

=S
=S

The vectors [1 2 3 4] and [4 3 6 5] specify which inputs and outputs, respectively,
complete the feedback interconnection. For example, feedback uses output 4 and input
1 of L to create the first feedback interconnection. The function uses output 3 and input 2
to create the second interconnection, and so on.

T3 is a 5-input, 7-output state-space model. The closed-loop response from Azref to Az is
T3(6,5).

Compare the step response from Azref to Az to confirm that the three approaches yield
the same results.

step(T1,T2('Az', 'Azref'),T3(6,5),2)

4-23

4 Model Interconnections

Step Response

From: Azref To: Az

Amplitude

0 02 04 06 08 1 12 14 16 1.8
Time (seconds)

See Also

connect | feedback

Related Examples
. “Multi-Loop Control System” on page 4-10
. “MIMO Control System” on page 4-18

4-24

See Also

More About

. “How the Software Determines Properties of Connected Models” on page 4-26

4-25

4 Model Interconnections

How the Software Determines Properties of Connected
Models

When you interconnect models, the operation and the properties of the models you are
connecting determine the resulting model's properties. The following table summarizes
some general rules governing how resulting model property values are determined.

4-26

Property Expected Behavior

Ts When connecting discrete-time models, all models must
have identical or unspecified (sys.Ts = -1) sample
time. The resulting model inherits the sample time from
the connected models.

InputName In general, the resulting model inherits I/O names and

OutputName I/0O groups from connected models. However, conflicting

InputGroup I/0 names or I/O groups are not inherited. For example,

InputGroup the InputName property for sysl + sys2 is left
unspecified if sys1 and sys2 have different InputName
property values.

TimeUnit All connected models must have identical TimeUnit
properties. The resulting model inherits its TimeUnit
from the connected models.

Variable A model resulting from operations on tf or zpk models
inherits its Variable property value from the operands.
Conflicts are resolved according the following rules:

» For continuous-time models, 'p' has precedence over
's'.
* For discrete-time models, 'q™~-1"' and 'z~-1"' have
precedence over 'q' and 'z"', while 'q' has
precedence over 'z'.
Notes Most operations ignore the Notes and UserData
UserData properties. These properties of the resulting model are

empty.

See Also

See Also

More About
. “Rules That Determine Model Type” on page 4-28

4-27

4 Model Interconnections

Rules That Determine Model Type

4-28

When you combine numeric LTI models on page 1-13 other than frd models using
connect, the resulting model is a state-space (ss) model. For other interconnection
commands, the resulting model is determined by the following order of precedence:

ss > zpk > tf > pid > pidstd

For example, connect an ss model with a pid model.

P
C = pid(-0.13,-0.61);

ss([-0.8,0.4;0.4,-1.0],[-3.0;1.4]1,[0.3,0],0);
);
CL = feedback(P*C,1)

The ss model has the highest precedence among Numeric LTI models. Therefore,
combining P and C with any model interconnection command returns an ss model.

Combining Numeric LTT models with Generalized LTI models on page 1-16 or with Control
Design Blocks on page 1-16 results in Generalized LTI models.

For example, connect the ss model CL with a Control Design Block.

F = tunableTF('F',0,1);
CLF = F*CL
CLF is a genss model.

Any connection that includes a frequency-response model (frd or genfrd) results in a
frequency-response model.

Note The software automatically converts all models to the resulting model type before
performing the connection operation.

See Also

connect | feedback | parallel | series

Related Examples
. “Numeric Model of SISO Feedback Loop” on page 4-6

See Also

. “Multi-Loop Control System” on page 4-10

More About

. “How the Software Determines Properties of Connected Models” on page 4-26
. “Recommended Model Type for Building Block Diagrams” on page 4-30

4-29

4 Model Interconnections

Recommended Model Type for Building Block Diagrams

4-30

This example shows how choice of model type can affect numerical accuracy when
interconnecting models.

You can represent block diagram components with any model type. However, certain
connection operations yield better numerical accuracy for models in ss form.

For example, interconnect two models in series using different model types to see how
different representations introduce numerical inaccuracies.

Load the models Pd and Cd. These models are ninth-order and second-order discrete-time
transfer functions, respectively.

load numdemo Pd Cd

Compute the open-loop transfer function L = Pd*Cd using the tf, zpk, ss, and frd
representations.

Ltf = Pd*Cd;
Lzp = zpk(Pd)*Cd;
Lss = ss(Pd)*Cd;

w = logspace(-1,3,100);
Lfrd = frd(Pd,w)*Cd;

Plot the magnitude of the frequency response to compare the four representations.

bodemag(Ltf,Lzp,Lss,Lfrd)
legend('tf', 'zpk','ss', 'frd")

See Also

Magnitude (dB)

Frequency (rad/s)

The tf representation has lost low-frequency dynamics that other representations

preserve.

See Also

More About
. “Rules That Determine Model Type” on page 4-28

Bode Diagram
150 . I
tf
zph
o 58
100 ""--..______. frd
50 T
E -
50 |
-100 = — »
10" 10° 107

[=r]

4-31

Model Transformation

* “Conversion Between Model Types” on page 5-2

* “Convert From One Model Type to Another” on page 5-4

* “Get Current Value of Generalized Model by Model Conversion” on page 5-6
* “Decompose a 2-DOF PID Controller into SISO Components” on page 5-8

* “Discretize a Compensator” on page 5-13

* “Improve Accuracy of Discretized System with Time Delay” on page 5-19

* “Convert Discrete-Time System to Continuous Time” on page 5-23

* “Continuous-Discrete Conversion Methods” on page 5-26

* “Upsample Discrete-Time System” on page 5-36

* “Choosing a Resampling Command” on page 5-40

5 Model Transformation

Conversion Between Model Types

5-2

Explicit Conversion Between Model Types

You can explicitly convert a model from one representation to another using the model-
creation command for the target model type. For example, convert to state-space
representation using ss, and convert to parallel-form PID using pid. For information
about converting to a particular model type, see the reference page for that model type.

In general, you can convert from any model type to any other. However, there are a few
limitations. For example, you cannot convert:

+ frd models to analytic model types such as ss, tf, or zpk (unless you perform system
identification with System Identification Toolbox software).
* ss models with internal delays to tf or zpk.

You can convert between Numeric LTI models and Generalized LTI models.

* Converting a Generalized LTI model to a Numeric LTI model evaluates any Control
Design Blocks at their current (nominal) value.

* Converting a Numeric LTI model to a Generalized LTI model creates a Generalized LTI
model with an empty Blocks property.

Automatic Conversion Between Model Types

Some algorithms operate only on one type of model object. For example, the algorithm for
zero-order-hold discretization with c2d can only be performed on state-space models.
Similarly, commands such as tfdata or piddata expect a particular type of model (tf or
pid, respectively). For convenience, such commands automatically convert input models
to the appropriate or required model type. For example:

sys = ss(0,1,1,0)
[num,den] = tfdata(sys)

tfdata automatically converts the state-space model sys to transfer function form to
return numerator and denominator data.

Conversions to state-space form are not uniquely defined. For this reason, automatic
conversions to state space do not occur when the result depends on the choice of state

See Also

coordinates. For example, the initial and kalman commands require state-space
models.

Recommended Working Representation

You can represent numeric system components using any model type. However, Numeric
LTI model types are not equally well-suited for numerical computations. In general, it is
recommended that you work with state-space (ss) or frequency response data (frd)
models, for the following reasons:

» The accuracy of computations using high-order transfer functions (tf or zpk models)
is sometimes poor, particularly for MIMO or high-order systems. Conversions to a
transfer function representation can incur a loss of accuracy.

* When you convert tf or zpk models to state space using ss, the software
automatically performs balancing and scaling operations. Balancing and scaling
improves the numeric accuracy of computations involving the model. For more
information about balancing and scaling state-space models, see “Scaling State-Space
Models” on page 24-2.

In addition, converting back and forth between model types can introduce additional
states or orders, or introduce numeric inaccuracies. For example, conversions to state
space are not uniquely defined, and are not guaranteed to produce a minimal realization
for MIMO models. For a given state-space model sys,

ss(tf(sys))

can return a model with different state-space matrices, or even a different number of
states in the MIMO case.

See Also
frd|pid|ss|tf|zpk

Related Examples
. “Convert From One Model Type to Another” on page 5-4

5 Model Transformation

Convert From One Model Type to Another

This example shows how to convert a numeric LTI model from one type (pid) to another
type (tf).

In general, you can convert a model from one type to another type using the model-
creation command for the target type. For example, you can use the tf command to
convert an ss model to transfer function form, or use the ss command to convert a zpk
model to state-space form.

Create a PID controller.

pid sys = pid(1,1.5,3)
pid sys =
1
Kp + Ki * --- + Kd * s

S
with Kp = 1, Ki = 1.5, Kd = 3

Continuous-time PID controller in parallel form.

Convert pid_sys to a transfer function model.

C

tf(pid _sys)

C:

Continuous-time transfer function.

Cis a tf representation of pid sys. C has the same dynamics as pid_sys, but stores the
dynamic parameters as transfer-function numerator and denominator coefficients instead
of proportional, integral, and derivative gains.

You can similarly convert transfer function models to pid models, provided the tf model
object represents a parallel-form PID controller with T = 0.

See Also

In general, you can use the technique of this example to convert any type of model to
another type of model. For more specific information about converting to a particular
model type, see the reference page for that model type.

See Also
frd | pid|ss|tf]|zpk

More About

. “Conversion Between Model Types” on page 5-2

3-5

5 Model Transformation

Get Current Value of Generalized Model by Model
Conversion

This example shows how to get the current value of a generalized model by converting it
to a numeric model. This conversion is useful, for example, when you have tuned the
parameters of the generalized model using a tuning command such as systune.

Create a Generalized Model

Represent the transfer function

F =

S+a

containing a real, tunable parameter, a, which is initialized to 10.

a
F

realp('a',10);
tf(a,[1 al);

F is a genss model parameterized by a.

Tune the Model

Typically, once of you have a generalized model, you tune the parameters of the model
using a tuning command such as systune. For this example, instead of tuning the model,
manually change the value of the tunable component of F.

F.Blocks.a.Value = 5;

Get the current value of the generalized model.

Get the current value of the generalized model by converting it to a numeric model.
F cur val = tf(F)

F cur val =

Continuous-time transfer function.

tf (F) converts the generalized model, F, to a numeric transfer function, F_cur_val.

See Also

To view the state-space representation of the current value of F, type ss(F).

To examine the current values of the individual tunable components in a generalized
model, use showBlockValue.

See Also
realp | showBlockValue | tf

More About

. “Models with Tunable Coefficients” on page 1-19
. “Conversion Between Model Types” on page 5-2
. “Convert From One Model Type to Another” on page 5-4

5-7

5 Model Transformation

Decompose a 2-DOF PID Controller into SISO
Components

This example shows how to extract SISO control components from a 2-DOF PID controller
in each of the feedforward, feedback, and filter configurations. The example compares the
closed-loop systems in all configurations to confirm that they are all equivalent.

Obtain a 2-DOF PID controller. For this example, create a plant model, and tune a 2-DOF
PID controller for it.

G = tf(1,[1 0.5 0.1]);
C2 = pidtune(G, 'pidf2',1.5);

C2 is a pid2 controller ohject. The control architecture for C2 is as shown in the following

illustration.
r— | .
O, = {5 =)
2-DOF PID Plant
Controller

This control system can be equivalently represented in several other architectures that
use only SISO components. In the feedforward configuration, the 2-DOF controller is
represented as a SISO PID controller and a feedforward compensator.

Ms)

r L ((s) U G5y >y

Decompose C2 into SISO control components using the feedforward configuration.

[Cff,Xff] = getComponents(C2, ' 'feedforward")

Decompose a 2-DOF PID Controller into SISO Components

Cff =
1 S
Kp + Ki * --- + Kd * --------
S Tf*s+1
with Kp = 1.12, Ki = 0.23, Kd = 1.3, Tf = 0.122

Continuous-time PIDF controller in parallel form.

Xff =

-10.898 (s+0.2838)

Continuous-time zero/pole/gain model.

This command returns the SISO PID controller Cff as a pid object. The feedforward
compensator X is returned as a zpk object.

Construct the closed-loop system for the feedforward configuration.

Tff = G*(Cff+Xff)*feedback(1l,G*Cff);

In the feedback configuration, the 2-DOF controller is represented as a SISO PID
controller and an additional feedback compensator.

Xis)

T

Decompose C2 using the feedback configuration and construct that closed-loop system.

[Cfb, Xfb] = getComponents(C2,'feedback');
Tfb = G*Cfb*feedback(1l,G*(Cfb+Xfb));

5-9

5 Model Transformation

5-10

In the filter configuration, the 2-DOF controller is represented as a SISO PID controller
and prefilter on the reference signal.

"@ C(s) el Gis) -V

Decompose C2 using the filter configuration. Construct that closed-loop system as well.

[Cfr, Xfr] = getComponents(C2,'filter');
Tfr = Xfr*feedback(G*Cfr,1);

Construct the closed-loop system for the original 2-DOF controller, C2. To do so, convert
C2 to a two-input, one-output transfer function, and use array indexing to access the
channels.

Ctf = tf(C2);
Cr = Ctf(1);
Cy = Ctf(2);
T = Cr*feedback(G,Cy,+1);

Compare the step responses of all the closed-loop systems.

stepplot(T,Tff,Tfb,Tfr)
legend('2-DOF', 'feedforward', 'feedback', 'filter', 'Location', 'Southeast')

See Also

Amplitude

Step Response

1 —

f 2-DOF
f feedforward

L ’lll feedback
/ filter

Time (seconds)

The plots coincide, demonstrating that all the systems are equivalent.

Using a 2-DOF PID controller can yield improved performance compared to a 1-DOF
controller. For more information, see “Tune 2-DOF PID Controller (Command Line)” on
page 11-16.

See Also
getComponents | pid2 | pidstd2

5-11

5 Model Transformation

Related Examples
. “Two-Degree-of-Freedom PID Controllers” on page 2-16

5-12

Discretize a Compensator

Discretize a Compensator

This example shows how to convert a compensator from continuous to discrete time using
several discretization methods, to identify a method that yields a good match in the
frequency domain.

You might design a compensator in continuous time, and then need to convert it to
discrete time for a digital implementation. When you do so, you want the discretization to
preserve frequency-domain characteristics that are essential to your performance and
stability requirements.

In the following control system, G is a continuous-time second-order system with a sharp
resonance around 3 rad/s.

c G 9

T 240.3519
+ Y .

_’\ -

o |

One valid controller for this system includes a notch filter in series with an integrator.
Create a model of this controller.

notch = tf([1,0.5,9],[1,5,9]);
integ = pid(0,0.34);

C = integ*notch;

bodeplot(C)

5-13

5 Model Transformation

Bode Diagram

]
—

[
T
f
i
i

Magnitude (dB)
|

D A5 T

@ | T

= | T

o 90 F—— f .

3] — f

= T |

o 35 '“*5_/" .
180 — : ﬂ

107" 10" 1o’ 102

Frequency (rad/s)

The notch filter centered at 3 rad/s counteracts the effect of the resonance in G. This
configuration allows higher loop gain for a faster overall response.

Discretize the compensator.
Cdz = c2d(C,0.5);

The c2d command supports several different discretization methods. Since this command
does not specify a method, c2d uses the default method, Zero-Order Hold (ZOH). In the
ZOH method, the time-domain response of the discretized compensator matches the
continuous-time response at each time step.

5-14

Discretize a Compensator

Magnitude (dB)

The discretized controller Cdz has a sample time of 0.5 s. In practice, the sample time you
choose might be constrained by the system in which you implement your controller, or by
the bandwidth of your control system.

Compare the frequency-domain response of C and Cdz.

bodeplot(C,Cdz)
legend('C','Cdz");

Bode Diagram

40 T

107

Frequency (rad/s)

10"

The vertical line marks the Nyquist frequency, /T, where T is the sample time. Near the
Nyquist frequency, the response of the discretized compensator is distorted relative to the
continuous-time response. As a result, the discretized notched filter may not properly

counteract the plant resonance.

5-15

5 Model Transformation

To fix this, try discretizing the compensator using the Tustin method and compare to the
ZOH result. The Tustin discretization method often yields a better match in the frequency
domain than the ZOH method.

Cdt = c2d(C,0.5, 'tustin');

plotopts = bodeoptions;
plotopts.Ylim = {[-60,40],[-225,0]1};
bodeplot(C,Cdz,Cdt,plotopts)
legend('C','Cdz"','Cdt")

3 3

=]
T

/

Magnitude (dB}

5

o2

& &

Phase (deg}
/
y

10 107" 10° 10! 10°
Freguency (radis)

The Tustin method preserves the depth of the notch. However, the method introduces a
frequency shift that is unacceptable for many applications. You can remedy the frequency
shift by specifying the notch frequency as the prewarping frequency in the Tustin
transform.

5-16

Discretize a Compensator

Magnitude (dB}

Phase (deg)

Discretize the compensator using the Tustin method with frequency prewarping, and

compare the results.

discopts = c2dOptions('Method', 'tustin', 'PrewarpFrequency',3.0);

Cdtp = c2d(C,0.5,discopts);

bodeplot(C,Cdt,Cdtp,plotopts)

legend('C','Cdt"', " 'Cdtp")

B o B &

&

o8

8 &

—

)

[*2]
T

10° 107"

107

Frequency (rad/s)

| -1-92

To specify additional discretization options beyond the discretization method, use
c2d0ptions. Here, the discretization options set discopts specifies both the Tustin
method and the prewarp frequency. The prewarp frequency is 3.0 rad/s, the frequency of

the notch in the compensator response.

5-17

5 Model Transformation

Using the Tustin method with frequency prewarping yields a better-matching frequency
response than Tustin without prewarping.

See Also
c2d | c2dOptions

More About

. “Continuous-Discrete Conversion Methods” on page 5-26
. “Improve Accuracy of Discretized System with Time Delay” on page 5-19

5-18

Improve Accuracy of Discretized System with Time Delay

Improve Accuracy of Discretized System with Time
Delay

This example shows how to improve the frequency-domain accuracy of a system with a
time delay that is a fractional multiple of the sample time.

For systems with time delays that are not integer multiples of the sample time, the
Tustin and Matched methods by default round the time delays to the nearest multiple of
the sample time. To improve the accuracy of these methods for such systems, c2d can
optionally approximate the fractional portion of the time delay by a discrete-time all-pass
filter (a Thiran filter). In this example, discretize the system both without and with an
approximation of the fractional portion of the delay and compare the results.

Create a continuous-time transfer function with a transport delay of 2.5 s.
G = tf(1,[1,0.2,4], 'ioDelay',2.5);

Discretize G using a sample time of 1 s. G has a sharp resonance at 2 rad/s. At a sample
time of 1 s, that peak is close to the Nyquist frequency. For a frequency-domain match
that preserves dynamics near the peak, use the Tustin method with prewarp frequency 2
rad/s.

discopts = c2dOptions('Method', 'tustin', 'PrewarpFrequency’',2);
Gt = c2d(G,1,discopts)

Warning: Rounding delays to the nearest multiple of the sampling period. For more accu
Gt =
0.1693 z"2 + 0.3386 z + 0.1693
z"2 + 0.7961 z + 0.913

Sample time: 1 seconds
Discrete-time transfer function.

The software warns you that it rounds the fractional time delay to the nearest multiple of
the sample time. In this example, the time delay of 2.5 times the sample time (2.5 s)
converts to an additional factor of z*(-3) in Gt.

Compare Gt to the continuous-time system G.

5-19

5 Model Transformation

plotopts = bodeoptions;

plotopts.Ylim = {[-100,20],[-1080,0]};
bodeplot(G,Gt,plotopts);

legend('G', 'Gt")

Bode Diagram
20 T T T — T
or _ _-,//\\ 1
E L - " d
o e,
ERTE .
@ 60 i
=
A0 - i
100 L t L
0 T T T I T
— -
180 S |
-D II.
o Sa0 \ B
B ,
ol ?2{? I~ N
800 b
\

102 107! 10" 10
Freguency (radis)

There is a phase lag between the discretized system Gt and the continuous-time system G,
which grows as the frequency approaches the Nyquist frequency. This phase lag is largely
due to the rounding of the fractional time delay. In this example, the fractional time delay
is half the sample time.

Discretize G again using a third-order discrete-time all-pass filter (Thiran filter) to
approximate the half-period portion of the delay.

5-20

Improve Accuracy of Discretized System with Time Delay

Magnitude (dB}

discopts.FractDelayApproxOrder = 3;
Gtf = c2d(G,1,discopts);

The FractDelayApprox0rder option specifies the order of the Thiran filter that
approximates the fractional portion of the delay. The other options in discopts are
unchanged. Thus Gtf is a Tustin discretization of G with prewarp at 2 rad/s.

Compare Gtf to G and Gt.
plotopts.PhaseMatching = 'on';

bodeplot(G,Gt,Gtf,plotopts);
legend('G','Gt",'Gtf"', 'Location', 'SouthWest")

Bode Diagram

&

o
|

|

\
4

o2 & B8 & &

3

2

Fhase (deg}

f &
1

102 107" 107 10
Freguency (radis)

5-21

5 Model Transformation

5-22

The magnitudes of Gt and Gtf are identical. However, the phase of Gtf provides a better
match to the phase of the continuous-time system through the resonance. As the
frequency approaches the Nyquist frequency, this phase match deteriorates. A higher-
order approximation of the fractional delay would improve the phase matching closer to
the Nyquist frequencies. However, each additional order of approximation adds an
additional order (or state) to the discretized system.

If your application requires accurate frequency-matching near the Nyquist frequency, use
c2dOptions to make c2d approximate the fractional portion of the time delay as a
Thiran filter.

See Also
c2d | c2dOptions | thiran

More About

. “Continuous-Discrete Conversion Methods” on page 5-26
. “Discretize a Compensator” on page 5-13

Convert Discrete-Time System to Continuous Time

Convert Discrete-Time System to Continuous Time

This example shows how to convert a discrete-time system to continuous time using d2c,
and compares the results using two different interpolation methods.

Convert the following second-order discrete-time system to continuous time using the
zero-order hold (ZOH) method:

_ z4+0.5
C@) = zrnE=5)
G = zpk(-0.5,[-2,51,1,0.1);
Gcz = d2c(G)

Warning: The model order was increased to handle real negative poles.
Gecz =

2.6663 (s”™2 + 14.28s + 780.9)

Continuous-time zero/pole/gain model.

When you call d2c without specifying a method, the function uses ZOH by default. The
ZOH interpolation method increases the model order for systems that have real negative
poles. This order increase occurs because the interpolation algorithm maps real negative
poles in the z domain to pairs of complex conjugate poles in the s domain.

Convert G to continuous time using the Tustin method.

Gect d2c (G, "tustin')
Gect =

0.083333 (s+60) (s-20)

(s-60) (s-13.33)
Continuous-time zero/pole/gain model.
In this case, there is no order increase.

Compare frequency responses of the interpolated systems with that of G.

5-23

5 Model Transformation

bode(G,Gcz,Get)
legend('G"', 'Gcz"', 'Get")

Bode Diagram

T L ==I11 T T

20T -:_-;::_?_

Magnitude (dB)

180 [o g 1

FPhase (deq)

-360 | / .

540 N . . .
107! 10 10" 102 102 10%
Frequency (rad/s)

In this case, the Tustin method provides a better frequency-domain match between the
discrete system and the interpolation. However, the Tustin interpolation method is
undefined for systems with poles at z = -1 (integrators), and is ill-conditioned for systems
with poles near z = 1.

See Also
d2c | d2cOptions

5-24

See Also

More About
. “Continuous-Discrete Conversion Methods” on page 5-26
. “Discretize a Compensator” on page 5-13

5-25

5 Model Transformation

Continuous-Discrete Conversion Methods

5-26

Choosing a Conversion Method

The c2d command discretizes continuous-time models. Conversely, d2¢ converts discrete-
time models to continuous time. Both commands support several discretization and
interpolation methods, as shown in the following table.

Discretization Method

Use When

“Zero-Order Hold” on page 5-27

You want an exact discretization in the time
domain for staircase inputs.

“First-Order Hold” on page 5-28

You want an exact discretization in the time
domain for piecewise linear inputs.

“Impulse-Invariant Mapping” on page 5-29
(c2d only)

You want an exact discretization in the time
domain for impulse train inputs.

“Tustin Approximation” on page 5-30

* You want good matching in the
frequency domain between the
continuous- and discrete-time models.

* Your model has important dynamics at
some particular frequency.

“Zero-Pole Matching Equivalents” on page
5-34

¢ You have a SISO model.

* You want good matching in the
frequency domain between the
continuous- and discrete-time models.

“Least Squares” on page 5-34 (c2d only)

¢ You have a SISO model.

* You want good matching in the
frequency domain between the
continuous- and discrete-time models.

* You want to capture fast system
dynamics but must use a larger sample
time.

Continuous-Discrete Conversion Methods

Zero-Order Hold

The Zero-Order Hold (ZOH) method provides an exact match between the continuous-
and discrete-time systems in the time domain for staircase inputs.

The following block diagram illustrates the zero-order-hold discretization Hy(z) of a
continuous-time linear model H(s).

ulk] y[k]

Hd'fﬁ]

The ZOH block generates the continuous-time input signal u(t) by holding each sample
value u(k) constant over one sample period:

u(t) = ulk], kTg<st=(k+1)T;

The signal u(t) is the input to the continuous system H(s). The output y[k] results from
sampling y(t) every T, seconds.

Conversely, given a discrete system H,(z), d2¢ produces a continuous system H(s). The
ZOH discretization of H(s) coincides with H,(2).

The ZOH discrete-to-continuous conversion has the following limitations:

* d2c cannot convert LTI models with poles at z = 0.

» For discrete-time LTI models having negative real poles, ZOH d2c conversion
produces a continuous system with higher order. The model order increases because a
negative real pole in the z domain maps to a pure imaginary value in the s domain.
Such mapping results in a continuous-time model with complex data. To avoid this
issue, the software instead introduces a conjugate pair of complex poles in the s
domain. See “Convert Discrete-Time System to Continuous Time” on page 5-23 for an
example.

5-27

5 Model Transformation

5-28

ZOH Method for Systems with Time Delays

You can use the ZOH method to discretize SISO or MIMO continuous-time models with
time delays. The ZOH method yields an exact discretization for systems with input delays,
output delays, or transport delays.

For systems with internal delays (delays in feedback loops), the ZOH method results in
approximate discretizations. The following figure illustrates a system with an internal
delay.

— L —

H(s)

e-TS

For such systems, c2d performs the following actions to compute an approximate ZOH
discretization:

Decomposes the delay tas 1 = kTs+ pwith0 = p < T

1

2 Absorbs the fractional delay p into H(s).
3 Discretizes H(s) to H(2).
4

Represents the integer portion of the delay kT; as an internal discrete-time delay z*.
The final discretized model appears in the following figure:

———— ———— —

———— —— — —

First-Order Hold

The First-Order Hold (FOH) method provides an exact match between the continuous-
and discrete-time systems in the time domain for piecewise linear inputs.

Continuous-Discrete Conversion Methods

FOH differs from ZOH by the underlying hold mechanism. To turn the input samples u[k]
into a continuous input u(t), FOH uses linear interpolation between samples:

t — kT

u(t) = ulk] + T

(uk + 1] - u[K]), kTssts=(k+1)Ts

In general, this method is more accurate than ZOH for systems driven by smooth inputs.

This FOH method differs from standard causal FOH and is more appropriately called
triangle approximation (see [2], p. 228). The method is also known as ramp-invariant
approximation.

FOH Method for Systems with Time Delays

You can use the FOH method to discretize SISO or MIMO continuous-time models with
time delays. The FOH method handles time delays in the same way as the ZOH method.
See “ZOH Method for Systems with Time Delays” on page 5-28.

Impulse-Invariant Mapping

The impulse-invariant mapping produces a discrete-time model with the same impulse
response as the continuous time system. For example, compare the impulse response of a
first-order continuous system with the impulse-invariant discretization:

Gdl = c2d(G,0.01, 'impulse');
impulse(G,Gdl)

5-29

5 Model Transformation

5-30

Impulze Responze
1 T T T T T T

Amplitude

0 1 2 3 4 5 G v
Time [zecandsz)

The impulse response plot shows that the impulse responses of the continuous and
discretized systems match.

Impulse-Invariant Mapping for Systems with Time Delays

You can use impulse-invariant mapping to discretize SISO or MIMO continuous-time
models with time delays, except that the method does not support ss models with
internal delays. For supported models, impulse-invariant mapping yields an exact
discretization of the time delay.

Tustin Approximation

The Tustin or bilinear approximation yields the best frequency-domain match between the
continuous-time and discretized systems. This method relates the s-domain and z-domain
transfer functions using the approximation:

Continuous-Discrete Conversion Methods

STS - 1 + STS/Z

L€ CET 5T 2

In c2d conversions, the discretization Hy(z) of a continuous transfer function H(s) is:

22z-1
Tsz+1

Hy(z) = H(s), s =

Similarly, the d2¢ conversion relies on the inverse correspondence

, 1+ sT,/2
H(s) = Hg(2'), z = T—sTg/2
When you convert a state-space model using the Tustin method, the states are not
preserved. The state transformation depends upon the state-space matrices and whether
the system has time delays. For example, for an explicit (E = I) continuous-time model
with no time delays, the state vector w[k] of the discretized model is related to the
continuous-time state vector x(t) by:

x(kTs) - %Bu(kTs) = X(KT,) - “2(AX(KTy) + Bu(kTy).

T
w[kT] = (I -AZ 5

2

T, is the sample time of the discrete-time model. A and B are state-space matrices of the
continuous-time model.

Tustin Approximation with Frequency Prewarping

If your system has important dynamics at a particular frequency that you want the
transformation to preserve, you can use the Tustin method with frequency prewarping.
This method ensures a match between the continuous- and discrete-time responses at the
prewarp frequency.

The Tustin approximation with frequency prewarping uses the following transformation of
variables:

§ = w z-1
~ tan(wTs/2) 2+ 1

This change of variable ensures the matching of the continuous- and discrete-time
frequency responses at the prewarp frequency w, because of the following
correspondence:

5-31

5 Model Transformation

5-32

H(jw) = Hy(e™"S)
Tustin Approximation for Systems with Time Delays

You can use the Tustin approximation to discretize SISO or MIMO continuous-time models
with time delays.

By default, the Tustin method rounds any time delay to the nearest multiple of the sample
time. Therefore, for any time delay tau, the integer portion of the delay, k*Ts, maps to a
delay of k sampling periods in the discretized model. This approach ignores the residual
fractional delay, tau - k*Ts.

You can to approximate the fractional portion of the delay by a discrete all-pass filter
(Thiran filter) of specified order. To do so, use the FractDelayApproxOrder option of
c2d0ptions. See “Improve Accuracy of Discretized System with Time Delay” on page 5-
19 for an example.

To understand how the Tustin method handles systems with time delays, consider the
following SISO state-space model G(s). The model has input delay T;, output delay t,, and
internal delay T.

Y

The following figure shows the general result of discretizing G(s) using the Tustin
method.

Continuous-Discrete Conversion Methods

By default, c2d converts the time delays to pure integer time delays. The c2d command
computes the integer delays by rounding each time delay to the nearest multiple of the

sample time T. Thus, in the default case, m; = round(t;/T,), m, = round(t,/T), and m =
round(t/Ty).. Also in this case, F(z) = F,(2) = F(z) = 1.

If you set FractDelayApprox0Order to a non-zero value, c2d approximates the
fractional portion of the time delays by Thiran filters F;(z), F,(z), and F(z).

The Thiran filters add additional states to the model. The maximum number of additional
states for each delay is FractDelayApproxOrder.

For example, for the input delay T;, the order of the Thiran filter F;(2) is:
order(Fi(z)) = max(ceil(t/Ty), FractDelayApprox0Order).

If ceil(ty/T,) < FractDelayApproxOrder, the Thiran filter F;(z) approximates the entire
input delay 7;. If ceil(t,/T;) > FractDelayApprox0Order, the Thiran filter only
approximates a portion of the input delay. In that case, c2d represents the remainder of
the input delay as a chain of unit delays 2™, where

m; = ceil(ty/T,) - FractDelayApproxQOrder

c2d uses Thiran filters and FractDelayApprox0rder in a similar way to approximate
the output delay 7, and the internal delay T.

When you discretizet f and zpk models using the Tustin method, c2d first aggregates all
input, output, and transport delays into a single transport delay Tror for each channel.
c2d then approximates Tror as a Thiran filter and a chain of unit delays in the same way
as described for each of the time delays in ss models.

5-33

5 Model Transformation

5-34

For more information about Thiran filters, see the thiran reference page and [4].

Zero-Pole Matching Equivalents

This method of conversion, which computes zero-pole matching equivalents, applies only
to SISO systems. The continuous and discretized systems have matching DC gains. Their
poles and zeros are related by the transformation:

ST,
zi=emls

where:

* z;is the ith pole or zero of the discrete-time system.
* s, is the ith pole or zero of the continuous-time system.
* T,is the sample time.

See [2] for more information.
Zero-Pole Matching for Systems with Time Delays

You can use zero-pole matching to discretize SISO continuous-time models with time
delay, except that the method does not support ss models with internal delays. The zero-
pole matching method handles time delays in the same way as the Tustin approximation.
See “Tustin Approximation for Systems with Time Delays” on page 5-32.

Least Squares

The least squares method minimizes the error between the frequency responses of the
continuous-time and discrete-time systems up to the Nyquist frequency using a vector-
fitting optimization approach. This method is useful when you want to capture fast system
dynamics but must use a larger sample time, for example, when computational resources
are limited.

This method is supported only by the c2d function and only for SISO systems.

As with Tustin approximation and zero-pole matching, the least squares method provides
a good match between the frequency responses of the original continuous-time system
and the converted discrete-time system. However, when using the least squares method
with:

See Also

* The same sample time as Tustin approximation or zero-pole matching, you get a
smaller difference between the continuous-time and discrete-time frequency
responses.

* Alower sample time than what you would use with Tustin approximation or zero-pole
matching, you can still get a result that meets your requirements. Doing so is useful if
computational resources are limited, since the slower sample time means that the
processor must do less work.

References

[1] Astrém, K.J. and B. Wittenmark, Computer-Controlled Systems: Theory and Design,
Prentice-Hall, 1990, pp. 48-52.

[2] Franklin, G.E.,, Powell, D.]., and Workman, M.L., Digital Control of Dynamic Systems
(3rd Edition), Prentice Hall, 1997.

[3] Smith, J.O. III, "Impulse Invariant Method", Physical Audio Signal Processing, August
2007. https://www.dsprelated.com/dspbooks/pasp/
Impulse Invariant Method.html.

[4] T. Laakso, V. Valimaki, "Splitting the Unit Delay", IEEE Signal Processing Magazine,
Vol. 13, No. 1, p.30-60, 1996.

See Also
c2d | c2dOptions | d2c | d2cOptions | d2d | d2d0ptions | thiran

Related Examples

. “Discretize a Compensator” on page 5-13
. “Improve Accuracy of Discretized System with Time Delay” on page 5-19
. “Convert Discrete-Time System to Continuous Time” on page 5-23

5-35

https://www.dsprelated.com/dspbooks/pasp/Impulse_Invariant_Method.html
https://www.dsprelated.com/dspbooks/pasp/Impulse_Invariant_Method.html

5 Model Transformation

Upsample Discrete-Time System

This example shows how to upsample a system using both the d2d and upsample
commands and compares the results of both to the original system.

Upsampling a system can be useful, for example, when you need to implement a digital
controller at a faster rate than you originally designed it for.

Create the discrete-time system

_ z+0.4

C@=7=07

with a sample time of 0.3 s.
G = tf([1,0.4],[1,-0.71,0.3);

Resample the system at 0.1 s using d2d.

G d2d = d2d(G,0.1)

G d2d =

Sample time: 0.1 seconds
Discrete-time transfer function.

By default, d2d uses the zero-order-hold (ZOH) method to resample the system. The
resampled system has the same order as G.

Resample the system again at 0.1 s, using upsample.

G _up = upsample(G,3)

G up =
z"3 + 0.4
z"3 0.7

Sample time: 0.1 seconds
Discrete-time transfer function.

5-36

Upsample Discrete-Time System

Amplitude

The second input, 3, tells upsample to resample G at a sample time three times faster
than the sample time of G. This input to upsample must be an integer.

G_up has three times as many poles and zeroes as G.

Compare the step responses of the original model G with the resampled models G d2d
and G_up.

step(G,'-r',G d2d,"':9"',G up,"'--b")
legend('G','d2d"', 'upsample', 'Location', 'SouthEast")

Step Response
45 o :
4 - -
15 - J
|

25T 4| il
2t | .

G
157 d2d)

= = = upsample

1 ! ! ! ! ! .

0 1 2 3 4 5 6 7

Time (seconds)

The step response of the upsampled model G_up matches exactly the step response of the
original model G. The response of the resampled model G_d2d matches only at every third
sample.

5-37

5 Model Transformation

Compare the frequency response of the original model with the resampled models.

bode(G,"'-r',G d2d,"':g',G up,'--b")
legend('G','d2d"', 'upsample’', 'Location', 'SouthWest')

Bode Diagram

15 T T T
o 1071 iy
=
L]
=
=
g Of |
o
E = -

-10 :

QE T T T

= | £ i

15 /o

fo

Phase (deq)

102 1071 10° 10 102
Frequency (rad/s)

In the frequency domain as well, the model G_up created with the upsample command
matches the original model exactly up to the Nyquist frequency of the original model.

Using upsample provides a better match than d2d in both the time and frequency
domains. However, upsample increases the model order, which can be undesirable.
Additionally, upsample is only available where the original sample time is an integer
multiple of the new sample time.

5-38

See Also

See Also
d2d | d2dOptions | upsample

More About

. “Choosing a Resampling Command” on page 5-40

5-39

5 Model Transformation

Choosing a Resampling Command

5-40

You can resample a discrete-time model using the commands described in the following
table.

To... Use the command...

* Downsample a system. d2d

* Upsample a system without any
restriction on the new sample time.

Upsample a system with the highest upsample
accuracy when:

* The new sample time is integer-value-
times faster than the sample time of the
original model.

Your new model can have more states
than the original model.

See Also
d2d | d2dOptions | upsample

Related Examples

“Upsample Discrete-Time System” on page 5-36

Model Simplification

* “Model Reduction Basics” on page 6-2

* “Reduce Model Order Using the Model Reducer App” on page 6-6

* “Balanced Truncation Model Reduction” on page 6-17

* “Pole-Zero Simplification” on page 6-47

* “Mode-Selection Model Reduction” on page 6-57

* “Visualize Reduced-Order Models in the Model Reducer App” on page 6-67

6 Model Simplification

Model Reduction Basics

6-2

Working with lower-order models can simplify analysis and control design, relative to
higher-order models. Simpler models are also easier to understand and manipulate. High-
order models obtained by linearizing complex Simulink models or from other sources can
contain states that do not contribute much to the dynamics of particular interest to your
application. Therefore, it can be useful to reduce model order while preserving model
characteristics that are important for your application.

When to Reduce Model Order

Cases where you might want to reduce model order include these situations:

You are working with a relatively high-order model obtained from linearizing a
Simulink model, performing a finite-element calculation, interconnecting model
elements, or other source.

You want to improve the simulation speed of a Simulink model at a certain operating
point. In that case, you can linearize a portion of the model at that operating point and
compute a reduced-order simplification or approximation of the linearized model. You
can then replace the portion of the model with an LTI Block containing the reduced-
order model.

You design a high-order controller that you want to implement as a lower-order
controller, such as a PID controller. For example, controller design using Linear-
Quadratic-Gaussian methods or H,, synthesis techniques can yield a high-order result.
In this case, you can try reducing the plant order before synthesis, reducing the
controller order after synthesis, or both.

You want to simplify a model obtained by identification with System Identification
Toolbox software.

The following diagram illustrates the relationship between model reduction and control
design.

Model Reduction Basics

Plant reduction

G {G,
@ Q
] ©]
= =
= =
= =]
=]]
= =
a [¢]
= =
o o
(9] (9]
Z. Z.
aQ aQ
=] =]

4 Y

C Controller reduction C

>

In general, when designing a controller for a system represented by a high-order model,
G, it is useful to start by simplifying the plant model. Then, design a relatively low-order
controller, Cy, for the lower-order plant model Gg. After you design a controller for either
the original or the reduced plant model, you can try to reduce the controller further.

Reducing the plant or controller can include:

» Discarding states that do not contribute to the system dynamics, such as structurally
disconnected states or canceling pole-zero pairs.

+ Discarding low-energy states that contribute relatively little to system dynamics.

* Focusing on a particular frequency region and discarding dynamics outside that
region. For example, if your control bandwidth is limited by actuator dynamics,
discard higher-frequency dynamics.

In any case, when you reduce model order, you want to preserve model characteristics
that are important for your application. Whenever you compute a reduced-order model,
verify that the reduced model preserves time-domain or frequency-domain behavior that
you care about. For example, for control design, it is useful to verify that the reduced
closed-loop system is stable. It is also useful to check that the reduced open-loop transfer
function CzGy adequately matches the original models where the open-loop gain GC is
close to 1 (in the gain crossover region).

6-3

6 Model Simplification

6-4

Choosing a Model Reduction Method

To reduce the order of a model, you can either simplify your model, or compute a lower-
order approximation. The following table summarizes the differences among several

model-reduction approaches.

Approach

Command Line

Model Reducer App

Simplification — Reduce
model order exactly by
canceling pole-zero pairs or
eliminating states that have
no effect on the overall
model response

* sminreal — Eliminate
states that are
structurally disconnected
from the inputs or
outputs.

e minreal — Eliminate
canceling or near-
canceling pole-zero pairs
from transfer functions.
Eliminate unobservable
or uncontrollable states
from state-space models.

“Pole-Zero Simplification”
on page 6-47 method —
Eliminate:

* Structurally
disconnected states

¢ Unobservable or
uncontrollable states
from state-space models

Canceling or near-
canceling pole-zero pairs
from transfer functions

Approximation — Compute
a lower-order approximation
of your model.

balred — Discard states
that have relatively low
effect on the overall model
response.

Balanced Truncation on
page 6-17 method —
Discard states that have
relatively low effect on the
overall model response.

Mode Selection —
Eliminate poles and zeros
that fall outside a specific
frequency range of interest.

freqsep — Separate model
into slow and fast dynamics
around a specified cutoff
frequency.

Mode Selection on page 6-
57 method — Select
frequency range of interest
and discard dynamics
outside that range.

Sometimes, approximation can yield better results, even if the model looks like a good
candidate for simplification. For example, models with near pole-zero cancellations are
sometimes better reduced by approximation than simplification. Similarly, using balred
to reduce state-space models can yield more accurate results than minreal.

When you use a reduced-order model, always verify that the simplification or
approximation preserves model characteristics that are important for your application.
For example, compare the frequency responses of the original and reduced models using

See Also

bodeplot or sigmaplot. Or, compare the open-loop responses for the original and
reduced plant and controller models.

See Also

Apps
Model Reducer

Functions
balred | freqsep | minreal | sminreal

Related Examples

. “Balanced Truncation Model Reduction” on page 6-17
. “Mode-Selection Model Reduction” on page 6-57

. “Pole-Zero Simplification” on page 6-47

6 Model Simplification

Reduce Model Order Using the Model Reducer App

6-6

This example shows how to reduce model order while preserving important dynamics
using the Model Reducer app. This example illustrates the Balanced Truncation method,
which eliminates states based on their energy contributions to the system response.

Open Model Reducer With a Building Model

This example uses a model of the Los Angeles University Hospital building. The building
has eight floors, each with three degrees of freedom: two displacements and one rotation.
The input-output relationship for any one of these displacements is represented as a 48-
state model, where each state represents a displacement or its rate of change (velocity).
Load the building model and open Model Reducer with that model.

load build.mat
modelReducer(G)

Select the model in the Data Browser to display some information about the model in the
Preview section. Double-click the model to see more detailed information.

Reduce Model Order Using the Model Reducer App

4\ Model Reducer @

MODEL REDUCER

o d & e W oE E

Open Save Import Export Balanced Mode Pole / Zero
Sesszion Session Model Model Truncation Selection Simplification
ODEL REDUCTION METHOD |

Data Browser
w Models

G

(v Preview 1

Hame: G

Type: state-space model
Order: 48

Number of inputs: 1
Number of ocutputs: 1

N A

Open the Balanced Truncation Tab

Model Reducer has three model reduction methods: Balanced Truncation, Mode
Selection, and Pole/Zero Simplification. For this example, click Balanced Truncation.

6 Model Simplification

4\ Model Reducer - Balanced Truncation - G

MODEL REDUCER PLOTS

BALANCED TRUNCATION WIEW

Model: [G | Reduced model orders: 14 O Model response @ |>
Preserve DC Gain ™ Absolute error plot
. Options Create
Dilecpliistates M Select frequency range: | [10 1e-02] ~ Relative error plot Reduced Model =
MODEL BALANCED TRUNCATION VISUALIZE OPTIONS CREATE

Data Browser ® Balanced Truncation - G

¥ Models Responses of G and Reduced Model
G - 0 T T T
m
= T G (48 states)
ﬁ 100 — — Raducad (14 states) ||
=
=
=
[}
= 200 1 1 1
90 T T T
=
g) a
= ol | | |
§ (. | e
- 1 —
& A || BEsa
90 | L 1
10° 10 102 10° 10°
Frequency (rad's)
w Preview w10 Hankel Singular Values (State Contributions)
3 T T T T T T T T T
Name: G I stbie modes
Type: state-space model 25 [Raduced ardars (14 statas) | |
Order: 48
Number of inputs: 1 & 2 -
Number of ocutputs: 1 o
w15 4
@
=
w 1 |
0.5 1
o L 1 1 1 1
0 5 10 15 20 25 30 35 40 45
State

Model Reducer opens the Balanced Truncation tab and automatically generates a
reduced-order model. The top plot compares the original and reduced model in the
frequency domain. The bottom plot shows the energy contribution of each state, where
the states are sorted from high energy to low energy. The order of the reduced model, 14,
is highlighted in the bar chart. In the reduced model, all states with lower energy
contribution than this one are discarded.

Compute Multiple Approximations

Suppose that you want to preserve the first, second, and third peaks of the model
response, around 5.2 rad/s, 13 rad/s, and 25 rad/s. Try other model orders to see whether

6-8

Reduce Model Order Using the Model Reducer App

you can achieve this goal with a lower model order. Compute a 5th-order and a 10th-order
approximation in one of the following ways:

* In the Reduced model orders text box, enter [5 10].
* In the state-contribution plot, ctrl-click the bars for state 5 and state 10.

Model Reducer computes two new reduced-order models and displays them on the
response plot with the original model G. To examine the three peaks more closely, Zoom in
on the relevant frequency range. The 10th-order model captures the three peaks
successfully, while the 5th-order model only approximates the first two peaks. (For
information about zooming and other interactions with the analysis plots, see “Visualize
Reduced-Order Models in the Model Reducer App” on page 6-67.)

6-9

6 Model Simplification

4\ Model Reducer - Balanced Truncation - G EI@
MODEL REDUCER PLOTS BALANCED TRUNCATION HE L EDSeEE
Model: |G | Reduced model orders: [510] O Model response @ |>
Preserve DC Gain ™ Absolute error plot
. Options Create
Order: 48 states I Select frequency range: |[10 12-07] ~ Relative error plot Reduced Model ~
MODEL BALANCED TRUNCATION VISUALIZE OPTIONS CREATE
Data Browser ® | Balanced Truncation - G |
¥ Models Responses of G and Reduced Model
G -
m
= -
o
g -
=
cC -
=]
[u]
=.

w
@
2
[
=
o
=80
10!
Frequency (rad's)
w Preview w10 Hankel Singular Values (State Contributions)
3 T T T T T T T T T
Name: G B =t modes
Type: state-space model 25 [Readuced ardars ([5 10] statas) | |

Order: 48
Number of inputs: 1
Number of ocutputs: 1

State Energy
-~ b owm

=
n

.°
@
3
&
B
]
&
&
&
&

Compare Reduced Models With Different Visualizations

In addition to the frequency response plot of all three models, Model Reducer lets you
examine the absolute and relative error between the original and reduced models. Select
Absolute error plot to see the difference between the building and reduced models.

6-10

-

Reduce Model Order Using the Model Reducer App

| Balanced Truncation - G |

Singular Values (dB}

-140 | I I I I

-100

-120 B

Absolute Error between G and Reduced Model

Errar of reduced maodel (|5 10] states) |_

[

107" 103

102 103 10*

Frequency (rad/s)

The 5th-order reduced model has at most -60dB error in the frequency region of the first
two peaks, below about 30 rad/s. The error increases at higher frequencies. The 10th-
order reduced model has smaller error over all frequencies.

Create Reduced Models in Data Browser

Store the reduced models in the Data Browser by clicking Create Reduced Model. The
5th-order and 10th-order reduced models appear in the Data Browser with names
GReduced5 and Greduced10.

#\ Model Reducer - Balanced Truncation - G

[=][=][=]

MODEL REDUCER PLOTS

BALANCED TRUNCATION

B - -’

Model: 'G—v| Reduced model orders: [510] ™ Model response @ |>
Preserve DC Gain O Absolute error plot _
Order: 48 states M Select frequency range: ’W‘ " Relative error plot oens Mg:i:zﬂa‘ -
MODEL BALANCED TRUNCATION VISUALIZE OPTIONS CREATE
Data Browser ® | Balanced Truncation - G |

w Models

G
GReduced5
GReducedl0

Absolute Error between G and Reduced Model
40 T

-60

s (dB}

| ﬂtf\ |ﬂ%}5.fﬁ\] —

You can continue to change the model-reduction parameters and generate additional

reduced models. As you do so, GReduced5 and Greduced10 remain unchanged in the
Data Browser.

6-11

6 Model Simplification

Focus on Dynamics at Particular Frequencies

By default, balanced truncation in Model Reducer preserves DC gain, matching the
steady-state response of the original and reduced models. Clear the Preserve DC Gain
checkbox to better approximate high-frequency dynamics. Model Reducer computes
new reduced models. The error in the high-frequency region is decreased at the cost of a
slight increase in error at low frequencies.

4\ Model Reducer - Balanced Truncation - G

Model: |G -

MODEL

Order: 48 states

BALANCED TRUNCATION

™ Relative error plot

L] O]l
MODEL REDUCER PLOTS BALANCED TRUNCATION @ \al .ﬂé. e LT:J 9 @ @
Reduced model orders: [510] ™ Model response @ |>
7 Preserve DC Gain O Absolute error plot
. ptions Create
=ElEct frequency range: [10 1=-027]

Reduced Model «

VISUALIZE OPTIONS CREATE

Data Browser ® | Balanced Truncation - G |
¥ Madels Absolute Error between G and Reduced Model
G -40 T T T
GReduced5 | Error of reduced model {[5 10] 5tates}|
GReducedl10 g o0 InI i 'ﬂ' |

o leff' [l 'lJﬁ

_ \

§ oo ———— w’}é“. NG

g \\K‘:‘"H__

E -100 ~=

o - -\--\"‘--\.

£ T

o 120 \\

1 +=1 -0 -1 2 -3 -4
10 10 10 10 10 10 10

Frequency (rad/s)

6-12

You can also focus the balanced truncation on the model dynamics in a particular
frequency interval. For example, approximate only the second peak of the building model
around 13 rad/s. First, select the Model response plot to see the Bode plots of models.
Then check Select frequency range checkbox. Model Reducer analyzes state
contributions in the highlighted frequency interval only.

You can drag the boundaries to change the frequency range interactively. As you change
the frequency interval, the Hankel Singular Value plot reflects the changes in the energy
contributions of the states.

Enter the frequency limits [10 22] into the text box next to Select frequency range.
The 5th-order reduced model captures the essential dynamics. The 10th-order model has
almost the same dynamics as the original building model within this frequency range.

Reduce Model Order Using the Model Reducer App

4\ Model Reducer - Balanced Truncation - G EI@
MODEL REDUCER PLOTS BALANCED TRUNCATION HE L EDSeEE
Model: |G | Reduced model orders: [510] O Model response @ |>
[Preserve DC Gain ™ Absolute error plot
. Options Create
Order: 48 states Select frequency range: [10 23] ~ Relative error plot Reduced Model ~
MODEL BALANCED TRUNCATION VISUALIZE OFTIONS CREATE
Data Browser ® | Balanced Truncation - G |
¥ Models Responses of G and Reduced Model ®@O0OMmMHE
G -
& T
GReduceds T 40 G (48 states) T
GReduced10 g 60F M ~— Raduced ([510] states)| 1
T B0 =
E:
£ 100 - . 5
. 720 T
o 540 4
B 360 [§
180 [4 | b
o -180 7
-360 .
10’
Frequency (rad's)
w Preview w10 Hankel Singular Values (State Contributions)
2 T T T T T T T T T
B sth e mades
[IRaduced ardars ([5 10] statas)
15 B
&
o
=)
w9 4
o
B
w
05 B
[i] 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45
State

Optionally, store these additional models in the Data Browser by clicking Create
Reduced Model.

Compare Models In Time Domain

You can compare time-domain responses of the stored reduced models and the original in
the Plots tab. In the Data Browser, control-click to select the models you want to
compare, G, GReduced5, and GReduced10. Then, click Step. Model Reducer creates a

step plot with all three models.

6-13

6 Model Simplification

Zooming on the transient behavior of this plot shows that GReduced10 captures the time
domain behavior of the original model well. However, the response of GReduced5
deviates from the original model after about 3 seconds.

4\ Model Reducer - Step Plot1 EI@
MODEL REDUCER FRR e o= =] T
__/\q_ " / \F_ o ¥ 0----3i-- 0
G,GReduceds GReduced10 r/i r/i - @ [\J o, fxio- =
Step Plot 1 Step Bode Impulse Nyguist Nichols Singular ... Pole/Zero ... O Pole/Z...
SELECTED MODEL FLOTS
Data Browser ® | Balanced Truncation - G | Step Plot1 |
w Models

G
GReduceds 1077
GReducedl0

Step Response

i G
. '||| —— GReduceds |
E GReducedi0

w Preview

Amplitude

1 2 3 4 5 6 7 8 9 10
Time (seconds)

Export Model for Further Analysis

Comparison of the reduced and original models in the time and frequency domains shows
that GReduced10 adequately captures the dynamics of interest. Export that model to the
MATLAB® workspace for further analysis and design. In the Model Reducer tab, click
Export Model. Clear the check boxes for G and Greduced>5, and click Export to export
Greduced10.

6-14

See Also

P

4 Model Reducer - Step Plot1

RESPONSE PLOT VIEW

[MODEL REDUCER

e FILE
Diata Browser Step Plot1
- Export models to MATLAB Workspace
w Models
Export Models Export as
G G
oo T T
GReduceds GReduceds
GReduced1l GReduced1d

| Ex[purt] | Can u:el] |Klp|

o

A

Greducedl10 appears in the MATLAB workspace as a state-space (ss) model.

itude

See Also
Model Reducer

Related Examples
. “Model Reduction Basics” on page 6-2
. “Balanced Truncation Model Reduction” on page 6-17

. “Pole-Zero Simplification” on page 6-47

6-15

6 Model Simplification

. “Mode-Selection Model Reduction” on page 6-57

6-16

Balanced Truncation Model Reduction

Balanced Truncation Model Reduction

Balanced truncation computes a lower-order approximation of your model by neglecting
states that have relatively low effect on the overall model response. Using a lower-order
approximation that preserves the dynamics of interest can simplify analysis and control
design. In the balanced truncation method of model reduction, the software measures
state contributions by Hankel singular values (see hsvd) and discards states with smaller
values. There are two ways to compute a reduced-order model by balanced truncation:

» At the command line, using the balred command.

* Inthe Model Reducer, using the Balanced Truncation method.

For more general information about model reduction, see “Model Reduction Basics” on
page 6-2.

Balanced Truncation in the Model Reducer App

Model Reducer provides an interactive tool for performing model reduction and
examining and comparing the responses of the original and reduced-order models. To
approximate a model by balanced truncation in Model Reducer:

1 Open the app, and import an LTI model to reduce. For instance, suppose that there is
a model named build in the MATLAB workspace. The following command opens
Model Reducer and imports the model.

modelReducer (build)

In the Data Browser, select the model to reduce. Click m Balanced Truncation.

6-17

6 Model Simplification

4\ Model Reducer

MODEL REDUCER VIEW
1 &
Open Save

UData Browser J Y
w+ Podels]

build

In the Balanced Truncation tab, Model Reducer displays a plot of the frequency
response of the original model and a reduced version of the model. The frequency
response is a Bode plot for SISO models, and a singular-value plot for MIMO models.
The app also displays a Hankel singular-value plot of the original model.

6-18

Balanced Truncation Model Reduction

Balanced Truncation - build

State Energy

Responses of build and Reduced Model

e {:' I T T T
@
= e ! build (48 statas)
—_— o
-% __._ _ ‘\-'\\//\ \"\-h.._\r ﬁu‘“-—t—_______.____: Raduced [14‘5[’5'3‘5:' -
3 -100 ———
c
L
m
= _2‘:}:} I | I
Ol T T T T T
= Y A
@ 1 [
= \ | |r||
0 | (ISR
3) FJ .l
ﬂ__m : M I'\,)I IJ'I"r'II q"'.y Efﬁ'?"_.____l__- . e] : MR
10" 10" 10° 107 10*
Frequency (rad's)
«103 Hankel Singular Values (State Contributions)
3 T T T T T T T T T
B -0k modes
25 [Reduced ardars (14 statas) |]
2 -
15 —
1 -
0.5 —
{, —— L I I I I
0 5 10 15 20 25 30 35 40 45
State

The Hankel singular-value plot shows the relative energy contributions of each state
in the system. Model Reducer computes an initial reduced-order model based on
these values. The highlighted bar is the lowest-energy state in the initial reduced-
order model. Model Reducer discards states that have lower Hankel singular values
than the highlighted bar.

6-19

6 Model Simplification

6-20

Try different reduced-model orders to find the lowest-order model that preserves the
dynamics that are important for your application. To specify different orders, either:

* Enter model orders in the Reduced model orders field. You can enter a single
integer or an array of integers, such as 10:14 or [8,11,12].

* Click a bar on the Hankel singular-value plot to specify the lowest-energy state of
the reduced-order model. Ctrl-click to specify multiple values.

When you change the specified reduced model order, Model Reducer automatically
computes a new reduced-order model. If you specify multiple model orders, Model
Reducer computes multiple reduced-order models and displays their responses on
the plot.

Balanced Truncation Model Reduction

-

(= (2]

BALANCED TRUNCATION @ H A % E g ﬁ

\ Model Reducer - Balanced Truncation - build

MODEL REDUCER PLOTS

v [ORLE < Reduced model orders: [4810] O Model response @ |>
¥ Preserve DC Gal ™ Absolute error plot
. Options Create
Order: 45 states I Select frequency range: | [10 12-07] ™ Relative error plot Reduced Model +
MODEL BALAMCED TRUNCATION VISUALIZE OPTIONS CREATE
Data Browser ® | Balanced Truncation - build |
¥ Models Responses of build and Reduced Model
build — 0 T T T
m
hol - build {48 states) 1
ﬁ M__/W ——— Raduced (4 8 10] states)
=
5 100 N
[}
= 150 1 1 1
180 T T T
g
z % T
E ° w B
o ——
.90 I L I
10° 10' 102 10° 10°
Frequency (rad's)
¥ Preview w10 Hankel Singular Values (State Contributions)
2 T T T T T T T T T
Hame: build B b mode:
Type: state-space model [IReduced ardars ([4 8 10] states) | |
Order: 48
Humber of inputs: 1 & b
Humber of ocutputs: 1 o
o] i
I
=
@ i
L 1 1 1 1
25 30 35 40 45
State

4 Optionally, examine the absolute or relative error between the original and reduced-
order model, in addition to the frequency response. Select the error-plot type using
the buttons on the Balanced Truncation tab.

6-21

6 Model Simplification

.

4\ Model Reducer - Balanced Truncation - build

MODEL REDUCER PLOTS BALANCED TRUNCATION

Wodel ’bulId—V| Reduced model orders: [4&10]

™ Model response

© Absolute error plot

Preserve DC Gain

Order: 48 states [Select frequency range: |[10 12-02] Reduced Model v
MODEL | BALANGED TRUNGATION | i | OPTIONS | CREATE |
Data Browser ® | Balanced Truncation - build % |
¥ Models Absolute Error between build and Reduced Model

build

6-22

Error of reduced model ([4 8 10] states}|
I3 -
|

"

For more information about using the analysis plots, see “Visualize Reduced-Order
Models in the Model Reducer App” on page 6-67.

If low-frequency dynamics are not important to your application, you can clear the
Preserve DC Gain checkbox. Doing so sometimes yields a better match at higher
frequencies between the original and reduced-order models.

Balanced Truncation Model Reduction

L

4\ Model Reducer - Balanced Truncation - build

MODEL REDUCER PLOTS

Model b—|ui|d - Reduced model orders: [& 10]

M Preserve DC Gain
H&bdfraqtmcyrmge: FQ 1e+02]

BALANCED TRU

Order. 48 states

MODEL BALANCED TRUNCATION
Data Browser] | Balanced Trung
w Models o
build -40

=)
o

o
=]

r\alues (dB}

When you check or clear the Preserve DC Gain checkbox, Model Reducer
automatically computes new reduced-order models. For more information about this
option, see “Compare Truncated and DC Matched Low-Order Model Approximations”
on page 6-30.

Optionally, limit the Hankel singular-value computation to a specific frequency range.
Such a limit is useful when the model has modes outside the region of interest to your
particular application. When you apply a frequency limit, Model Reducer
determines which states to truncate based on their energy contribution within the
specified frequency range only. Neglecting energy contributions outside that range
can yield an even lower-order approximation that is still adequate for your
application.

To limit the singular-value computation, check Select frequency range. Then,
specify the frequency range by:

6-23

6 Model Simplification

* In the text box, entering a vector of the form [fmin, fmax]. Units are rad/
TimeUnit, where TimeUnit is the TimeUnit property of the model you are
reducing.

* On the response plot or error plot, dragging the boundaries of the shaded region
or the shaded region itself. Model Reducer analyzes the state contributions
within the shaded region only.

P -
4\ Madel Reducer - Balanced Truncation - build EI@
REPEIET-E

Model: ’bulId—V| Reduced model orders: 8 O Model response @ |>
Preserve NIC Gain

™ Absolute error plot

. Options Create
Order: 43 states Relative error plot Reduced Model
MODEL VISUALIZE OPTIONS CREATE
Data Browser ® | Balanced Truncaticn - build | S—
¥ Models Responses of bfiild and Reduced Mode! @OMHE
T T

(=]

build

4

—— build (48 states) | |
l—— Reduced (8 states)

Magnitude (dB}
3
T

-100 [
-13} 1 1 Il
360 T T T T
3
=2 or S AN i
1 4 | 3
8 360 | I AN e
=
a
720 | | | B I
107 10" 10° 10° 10? 10°
Freque
* Preview 108 Hankel Singular Values (State Contributions)
PR

When you check or clear the Select frequency range checkbox or change the
selected range, Model Reducer automatically computes new reduced-order models.

Note Checking Select frequency range automatically clears Preserve DC Gain.
To enforce a DC match even when using frequency limits, recheck Preserve DC
Gain.

7 When you have one or more reduced models that you want to store and analyze

further, click [:) The new models appear in the Data Browser. If you have specified
multiple orders, each reduced model appears separately. Model names reflect the
reduced model order.

6-24

Balanced Truncation Model Reduction

.

4\ Madel Reducer - Balanced Truncation - build

"
=0 E=R)
MODEL REDUCER PLOTS BALANCED TRUNCATION
Wodel: |build | Reduced model orders: [4810] O Model response @ |> L\\’
71 Preserve DC Gain ™ Absolute error plot I
) Options Create
Order: 48 states Select frequency range: |5 30] ~ Relative error plot Reduced Model =
T BALANGED TRUNGATICN VISUALIZE OPTIONS CREATE
f-ljata Browser ® | Balanced Truncation - build |
w Models

Responses of build and Reduced Model
T T T | T
L build (48 states)
=50 4 — Raduced ([4 & 10] stales)

build
buildReduced4
buildReducedd
buildReducedld

Magnitude (dB}

After creating reduced models in the Data Browser, you can continue changing the

reduction parameters and create reduced models with different orders for analysis
and comparison.

You can now perform further analysis with the reduced model. For example:

Examine other responses of the reduced system, such as the step response or Nichols
plot. To do so, use the tools on the Plots tab. See “Visualize Reduced-Order Models in
the Model Reducer App” on page 6-67 for more information.

Export reduced models to the MATLAB workspace for further analysis or control

design. On the Model Reducer tab, click i Export.

Generate MATLAB Code for Balanced Truncation

To create a MATLAB script you can use for further model-reduction tasks at the command
line, click Create Reduced Model, and select Generate MATLAB Script.

6-25

6 Model Simplification

6-26

odel response |>

Absolute error plo
Create

Reduced Model «

VISUALIZE

Create Reduced Model

build | |> Create reduced

Relative Errbi model in data browser.

Generate MATLAB Script
E Generate MATLAE script
to create the reduced model.

Model Reducer creates a script that uses the balred command to perform model
reduction with the parameters and options you have set on the Balanced Truncation
tab. The script opens in the MATLAB editor.

Approximate Model by Balanced Truncation at the Command
Line

At the command-line, use balred to compute a reduced-order approximation of a model.
To do so, first examine the contribution of the various states to the overall model
behavior. Choose the approximation order based on the number of states that make a

significant contribution to the overall model behavior.

For this example, load a high-order model. hplant is a 23rd-order SISO model.

Balanced Truncation Model Reduction

State Energy

load ltiexamples hplant
order(hplant)

ans = 23

Examine the relative amount of energy per state in hplant using a Hankel singular-value
(HSV) plot.

hsvplot (hplant)

Hankel Singular Values (State Contributions)
(I siaohe modes

140 T

120

100

g

2

40

State

Small Hankel singular values indicate that the associated states contribute little to the
behavior of the system. The plot shows that two states account for most of the energy in
the system. Therefore, try simplifying the model to just first or second order.

6-27

6 Model Simplification

6-28

opts = balredOptions('StateElimMethod', 'Truncate');
hplantl balred(hplant,1,opts);
hplant2 balred(hplant,2,opts);

The second argument to balred specifies the target approximation order, so that
hplantl is a first-order approximation and hplant2 is a second-order approximation of
hplant. By default, balred discards the states with the smallest Hankel singular values,
and alters the remaining states to preserve the DC gain of the system. Setting the
StateElimMethod option to Truncate causes balred to discard low-energy states
without altering the remaining states.

When working with reduced-order models, it is important to verify that the approximation
does not introduce inaccuracies at frequencies that are important for your application.
Therefore, compare the frequency responses of the original and approximated systems.
For MIMO systems, use the sigmaplot command. For this SISO system, examine a Bode
plot.

bodeplot (hplant,hplant2,hplantl)
legend('Original', '2nd order','lst order')

Balanced Truncation Model Reduction

Magnitude (dB)

Bode Diagram
~ From: Robot Arm/Demux1 (pt. 2) To: Motorized Spindlel (pt. 1)
~
o \ 1
S
e
'EE | ':._: -
--H"‘-'\-:--_
-100 | T
~
.,
)
-150 ' ' '
0 === T T T
- Original
45 \ 2nd order | 7
1st order
E['; u ——
4135 b = __xf-"f |
s S _.—-”'_'-f#— —— - ""--... -
-180 [— -
-225 — = —
10 107 10° 10

Frequency (rad/s)

The second-order approximation hplant2 matches the original 23rd-order system very
well, especially at lower frequencies. The first-order system does not match as well.

In general, as you decrease the order of the approximated model, the frequency response
of the approximated model begins to differ from the original model. Choose an
approximation that is sufficiently accurate in the bands that are important to you. For
example, in a control system you might want good accuracy inside the control bandwidth.
Accuracy at frequencies far above the control bandwidth, where the gain rapidly rolls off,
might be less important.

You can also validate the approximation in the time domain. For instance, examine the
step responses of the original and reduced-order systems.

6-29

6 Model Simplification

stepplot(hplant,hplant2, 'r--',hplantl, 'g--")
legend('Original', '2nd order','lst order', 'Location', 'SouthEast')

Step Response

From: Robot Arm/Demuxt (pt. 2) To: Motorized Spindlel (pt. 1)
300 T T r r T .
250 P - :
s
........... KH,_._M
2001 7y 7
,
- /
EL 180 [1
< It
|
100 - | .
f
[
|1|
50 [Original |
if — — — 2nd order
.'||' 15t order
E 1 1 1 1 1 1
500 1000 1500 2000 2500 3000 3500
Time (seconds)

This result confirms that the second-order approximation is a good match to the original

23rd-order system.
Compare Truncated and DC Matched Low-Order Model

Approximations
This example shows how to compute a low-order approximation in two ways and
compares the results. When you compute a low-order approximation by the balanced

truncation method, you can either:

6-30

Balanced Truncation Model Reduction

» Discard the states that make the smallest contribution to system behavior, altering the
remaining states to preserve the DC gain of the system.

* Discard the low-energy states without altering the remaining states.

Which method you choose depends on what dynamics are most important to your
application. In general, preserving DC gain comes at the expense of accuracy in higher-
frequency dynamics. Conversely, state truncation can yield more accuracy in fast
transients, at the expense of low-frequency accuracy.

This example compares the state-elimination methods of the balred command,
Truncate and MatchDC. You can similarly control the state-elimination method in the
Model Reducer app, on the Balanced Truncation tab, using the Preserve DC Gain
check box, as shown.

r

4\ Model Reducer - Balanced Truncation - build

WMODEL REDUCER PLOTS

Model Ibulld—v| Reduced model orders: [4 8 10]

f'llbebc(ﬁ'eqmcyrﬂnge: F.i 1e+02]

BALANCED TRU

Order; 43 siates

MODEL BALANCED TRUNCATION
Data Browser] | Balanced Trung
w Models
build =40

rValues [dB}

Consider the following system.

6-31

6 Model Simplification

6-32

2 s(5+2) N
r S0 T GG 3) 4
C G

Create a closed-loop model of this system from r to y.

zpk([O0 -21,[-1 -31,1);
tf(2,[1 1le-2]);
feedback(G*C, 1)

G
C
T
T

(s+0.004277) (s+1.588) (s+4.418)
Continuous-time zero/pole/gain model.

T is a third-order system that has a pole-zero near-cancellation close to s = 0. Therefore,
it is a good candidate for order reduction by approximation.

Compute two second-order approximations to T, one that preserves the DC gain and one
that truncates the lowest-energy state without changing the other states. Use
balredOptions to specify the approximation methods, MatchDC and Truncate,
respectively.

matchopt = balredOptions('StateElimMethod', 'MatchDC');
truncopt = balredOptions('StateElimMethod', 'Truncate');
Tmatch balred(T,2,matchopt);

Ttrunc balred(T,2,truncopt);

Compare the frequency responses of the approximated models.

bodeplot(T,Tmatch,Ttrunc)
legend('Original', 'DC Match', 'Truncate')

Balanced Truncation Model Reduction

Magnitude (dB)

Fhase {deq)

40

60

180

Bode Diagram

/ N
Original
DC Match

— Truncate |

HH“-.,‘___
__""--.__ e -
H“\ .__.__.-f"
104 1072 Ik 102

Frequency (rad/s)

The truncated model Tt runc matches the original model well at high frequencies, but
differs considerably at low frequency. Conversely, Tmatch yields a good match at low
frequencies as expected, at the expense of high-frequency accuracy.

You can also see the differences between the two methods by examining the time-domain
response in different regimes. Compare the slow dynamics by looking at the step
response of all three models with a long time horizon.

stepplot(T,Tmatch, 'r--',Ttrunc,1500)
legend('Original', 'DC Match', 'Truncate')

6-33

6 Model Simplification

Step Response

Criginal
— — —DC Match | |
Truncate
Jub} J
o
=
=
E |
<
0.1 : :
0 500 1000 1500

Time (seconds)

As expected, on long time scales the DC-matched approximation Tmatch has a very
similar response to the original model.

Compare the fast transients in the step response.

stepplot(T,Tmatch,'r',Ttrunc, 'g--',0.5)
legend('Original', 'DC Match', 'Truncate')

6-34

Balanced Truncation Model Reduction

Step Response

0.45 ; . ——
Criginal
0.4 DC Match |
}’ Truncate
0.35 -]
.-_-.___.-'
0.3 S]
L -’-,’- -
___.—"
L e
5 Lo -]
=
=
E 0.2 7
<L
0.15 .
01 T
0.05 .
E 1 Il 1 Il 1 1] 1 1
0 0.05 01 0.15 0.2 0.25 0.35 04 045 0.5

0.3
Time (seconds)

On short time scales, the truncated approximation Ttrunc provides a better match to the
original model. Which approximation method you should use depends on which regime is
most important for your application.

Approximate Model with Unstable or Near-Unstable Pole

This example shows how to compute a reduced-order approximation of a system when the
system has unstable or near-unstable poles.

When computing a reduced-order approximation, the balred command (or the Model
Reducer app) does not eliminate unstable poles because doing so would fundamentally

6-35

6 Model Simplification

change the system dynamics. Instead, the software decomposes the model into stable and
unstable parts and reduces the stable part of the model.

If your model has near-unstable poles, you might want to ensure that the reduced-order
approximation preserves these dynamics. This example shows how to use the 0ffset
option of balred to preserve poles that are close to the stable-unstable boundary. You
can achieve the same result in the Model Reducer app, on the Balanced Truncation
tab, under Options, using the Offset field, as shown:

-

4\ Model Reducer - Balanced Truncation - build

MODEL REDUCER PLOTS BALANCED TRUNCATION

Modet: ,bund—v| Reduced model orders: 14 O MWodel response
Pregerve DC Gain ~ Absolute error plot
Order: 48 states [Select frequency range: |[10 1e-02] ~ Relative error piot
MODEL BALANCED TRUNCATION VISUALIZE Cptions

Data Browser = | Balanced Truncation - build | Balanced Truncation Options

w Models Resp Absolute Tolerance: |0 | Model

build - 0 T Relative Tolerance:
m
2 ——————”A’*\/““ Offset: 1e08 } buif
_E T _— — Re

e

2 @
c
[=
L]
=

3

Load a model with unstable and near-unstable poles.

load('reduce.mat', 'gasf35unst')

gasft35unst is a 25-state SISO model with two unstable poles (Re(s) > 0). Examine the
system poles to find the near-unstable poles.

pzplot(gasf35unst)
axis([-0.0015 0.0015 -0.0005 0.0005])

6-36

Balanced Truncation Model Reduction

Imaginary Axis {seconds'1]

10 Pole-Zero Map
4 ®
3
o
2 L
o
1 X
E o o }{ .. }{ O
1 x
o
_2 o O
3
4 F *
15 1 0.5 0 0.5 1 1.5
Real Axis (seconds™) 10°3

The pole-zero plot shows several poles (marked by x) that fall in the left half-plane, but
relatively close to the imaginary axis. These are the near-unstable poles. Two of these fall
within 0.0005 of instability. Three more fall within 0.001 of instability.

Examine a Hankel singular-value plot of the model.

hsvplot(gasf35unst)

6-37

6 Model Simplification

6-38

State Energy

Hanke! Singular Values (State Contributions)

T T
B stahle modas
s odes
'D 1 1 1 1
0 5 10 15 20 25

State

The plot shows the two unstable modes, but you cannot easily determine the energy
contribution of the near-unstable poles. In your application, you might want to reduce the
model without discarding those poles nearest to instability, even if they are of relatively
low energy. Use the 0ffset option of balred to calculate a reduced-order system that
preserves the two stable poles that are closest to the imaginary axis. The Offset option
sets the boundary between poles that balred can discard, and poles that bal red must
preserve (treat as unstable).

opts = balredOptions('Offset',0.0005);
gasf arr = balred(gasf35unst,[10 15],opts);

Providing balred an array of target approximation orders [10 15] causes balred to
return an array of approximated models. The array gasf arr contains two models, a

Balanced Truncation Model Reduction

Magnitude (dB)

FPhase (deq)

10th-order and a 15th-order approximation of gasf35unst. In both approximations,
balred does not discard the two unstable poles or the two nearly-unstable poles.

Compare the reduced-order approximations to the original model.

bodeplot(gasf35unst,gasf_arr,'r--")

Bode Diagram

100 T T

n
—
4

[
&hn
]

T

]

|

180]

180 . = - — .
10°% 10°< 10" 10° 107 10
Frequency (rad/s)

[=r]

The 15th order approximation is a good frequency-domain match to the original model.
However, the 10th-order approximation shows changes in high-frequency dynamics,
which might be too large to be acceptable. The 15th-order approximation is likely a better
choice.

6-39

6 Model Simplification

6-40

Frequency-Limited Balanced Truncation

Focusing the energy-contribution calculation on a particular frequency region sometimes
yields a good approximation to the dynamics of interest at a lower order than a reduction
that takes all frequencies into account. For this example, reduce a high-order model with
a focus on the dynamics in a particular interval.

This example demonstrates frequency-limited balanced truncation at the command line,
using options for the balred command. You can also perform frequency-limited balanced
truncation in the Model Reducer app, on the Balanced Truncation tab, using the
Select frequency range check box, as shown.

P

4\ Model Reducer - Balanced Truncation - build

MODEL REDUCER PLOTS BALANCED TRUNCATION

Model bui—lld | Reduced model orders: '8 | O Model resp
RRME il ™ Absolute

Order: 48 siates

Relative
MODEL VISUALIZE
Data Browser)] | Balanced Truncation - build |
w Models o

build

Load a model and examine its frequency response.

load(fullfile(matlabroot, 'examples', 'control', 'build.mat'),'G")
bodeplot(G)

Balanced Truncation Model Reduction

Magnitude (dB)

Phase (deq)

Bode Diagram

-40

G0 T

-80 T

M

L]
T

45 |

L\\;"U' | |1 || L]l N L

k)k; jkf\x

I et

-90
10"

10 10°
Frequency (rad/s)

10°

G is a 48th-order model with several large peak regions around 5.2 rad/s, 13.5 rad/s, and
24.5 rad/s, and smaller peaks scattered across many frequencies. Examine the Hankel
singular-value plot to see the energy contributions of the model's 48 states.

hsvd(G)

6-41

6 Model Simplification

3 107 Hanke! Singular Values (State Contributions)
T T T T T T T T T
(I Siabhe modes
25 4
2 4
o
E
D
C
w1 4
o
s
@
- Il Il Il Il
25 a0 35 40 45

State

The singular-value plot suggests that you can discard at least 20 states without significant
impact on the overall system response. Suppose that for your application you are only
interested in the dynamics near the second large peak, between 10 rad/s and 22 rad/s.
Try a few reduced-model orders based on the Hankel singular value plot. Compare their
frequency responses to the original model, especially in the region of that peak.

G18
G10

balred(G,18);
balred(G,10);

bodeplot(G,G18,G10, logspace(0.5,1.5,100));
legend('Original', 'Order 18','Order 10');

6-42

Balanced Truncation Model Reduction

Magnitude (dB)

Phase (deq)

Bode Diagram
A0 r
50 | 1
an b - A l
60 \ n\\
e
-Fo T f P_ | i
\/ v
80 | .
-90 '
90 —— T
T -~ Original
45 | J,-'r/ﬂ Order 18|
[Order 10
0f | 1
45 | N W
NANS . /m,_j \

10’

Frequency (rad/s)

The 18th-order model is a good match to the dynamics in the region of interest. In the
10th order model, however, there is some degradation of the match.

Focus the model reduction on the region of interest to obtain a good match with a lower-
order approximation. First, examine the state energy contributions in that frequency
region only. Use hsvdOptions to specify the frequency interval for hsvd.

hopt =
hsvd (G, hopt)

hsvdOptions('FregIntervals',b[10,22]);

6-43

6 Model Simplification

6-44

State Energy

2 107 Hanke! Singular Values (State Contributions)

T
(I Sl modes
1.8 —

1.6 .

1.4 .

—
[
I

[y
i

=
o
I

0.6 .

0.4 .

0.2 .

] s 10 15 20 25 30 35 40 45
State

Comparing this plot to the previous Hankel singular-value plot shows that in this
frequency region, many fewer states contribute significantly to the dynamics than
contribute to the overall dynamics.

Try the same reduced-model orders again, this time choosing states to eliminate based
only on their contribution to the frequency interval. Use balredOptions to specify the
frequency interval for balred.

bopt = balredOptions('StateElimMethod', 'Truncate', 'FreqIntervals',[10,22]);
GLiml1l8 = balred(G,18,bopt);
GLim1l0 = balred(G,10,bopt);

bodeplot(G,GLim18,GLim10, logspace(0.5,1.5,100));
legend('Original', 'Order 18','Order 10');

See Also

Magnitude (dB)

-20

B
o

A / .-"H" ;
G0) f «/\

-80
135
Criginal
90 P— Order 18| 7
\ Order 10
45 Y i
0f '-

) W\, W

Bode Diagram

10"
Frequency (rad/s)

With the frequency-limited energy computation, a 10th-order approximation is as good in
the region of interest as the 18th-order approximation computed without frequency limits.

See Also

Apps
Model Reducer

Functions
balred | hsvplot

6-45

6 Model Simplification

Related Examples

. “Mode-Selection Model Reduction” on page 6-57
. “Pole-Zero Simplification” on page 6-47
. “Model Reduction Basics” on page 6-2

6-46

Pole-Zero Simplification

Pole-Zero Simplification

Pole-zero simplification reduces the order of your model exactly by canceling pole-zero
pairs or eliminating states that have no effect on the overall model response. Pole-zero
pairs can be introduced, for example, when you construct closed-loop architectures.
Normal small errors associated with numerical computation can convert such canceling
pairs to near-canceling pairs. Removing these states preserves the model response
characteristics while simplifying analysis and control design. Types of pole-zero
simplification include:

* Structural elimination — Eliminate states that are structurally disconnected from the
inputs or outputs. Eliminating structurally disconnected states is a good first step in
model reduction because the process does not involve any numerical computation. It
also preserves the state structure of the remaining states. At the command line,
perform structural elimination with sminreal.

* Pole-zero cancellation or minimal realization — Eliminate canceling or near-canceling
pole-zero pairs from transfer functions. Eliminate unobservable or uncontrollable
states from state-space models. At the command line, perform this kind of
simplification with minreal.

In the Model Reducer app, the Pole-Zero Simplification method automatically
eliminates structurally disconnected states and also performs pole-zero cancellation or
minimal realization.

Pole-Zero Simplification in the Model Reducer App

Model Reducer provides an interactive tool for performing model reduction and
examining and comparing the responses of the original and reduced-order models. To
reduce a model by pole-zero simplification in Model Reducer:

1 Open the app and import a model to reduce. For instance, suppose that there is a
model named build in the MATLAB workspace. The following command opens
Model Reducer and imports the LTI model build.

modelReducer(build)

In the Data Browser, select the model to reduce. Click 2.l Pole-Zero
Simplification.

6-47

6 Model Simplification

6-48

4\ Model Reducer

MODEL REDUCER

8 & &

Open Save Import Export Balanced
Session Session ‘ Model Model Truncation
FILE

VIEW

IMPORT / EXPORT

Data Browser

w Podels

In the Pole-Zero Simplification tab, Model Reducer displays a plot of the
frequency response of the original model and a reduced version of the model. The
app also displays a pole-zero map of both models.

Pole-Zero Simplification

| Pole-Zero Simplification - build [

Responses of build and Reduced Model

Real Axis [semnds'1}

— AR T T T ™ A S S S
o 3/ build (48 statas)
= el - l,"'u\ N — Reduced (48 states) | 7|
3 L — —
T -0 .
o
w X
E_.“]] [l L [l L H H H FE
_ @ —— T y [
=2 !
B \" |'(II i
ﬁ o I\-’\. | I'\I | ||‘_ "I -
i @ l"xjﬂ‘._Jl I_\Ar'k._J I'_/J L"\}ﬂ\,-- |
10° 10° 107 10°
Frequency (rad's)
Pole - Zero Maps of build and Reduced Model 100
1DD T T T T T N T N T T
& : o
= Papa DOMEL g g DO 0.019:.. build (48 staies)
"a O T DU UTU PP~ SUOS [z B Ry Reduced (48 states) |-
B OS0L e bhser NN s SR a0
g o : S . ﬁ?'}‘DE n .
- IOV e By 2
= or BT {114 2
N @Q
c O e, TR TN :T o 20
E . . 2 KR : N An -
S B0 o 0B B i 40
E 008 g, @ B B R s o B0
g | 0.038, . 0.026 0.019 0.013 0.008 0.004 80
-100 ' ' ' 100
4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1 0.5 0

The pole-zero map marks pole locations with x and zero locations with o.

Note The frequency response is a Bode plot for SISO models, and a singular-value
plot for MIMO models.

Optionally, change the tolerance with which Model Reducer identifies canceling
pole-zero pairs. Model Reducer cancels pole-zero pairs that fall within the tolerance
specified by the Simplification of pole-zero pairs value. In this case, no pole-zero

6-49

6 Model Simplification

pairs are close enough together for Model Reducer to cancel them at the default
tolerance of 1e-05. To cancel pairs that are a little further apart, move the slider to
the right or enter a larger value in the text box.

MODEL REDUCER

Model: | build

- O

TR EW RNz (0L

Simplification of pole - zero pairs

© Model response D

rey ™ Absolute error plot
Order: 45 states Less Simplﬂyﬁ More [0.000s [2 Relative error plot Crea:::de‘ .
MODEL POLE - ZERO SIMPLIFICATION VISUALIZE CREATE =
Data Browser ® Pole-Zero Simplification - build |

¥ Models Responses of build and Reduced Model
build . -0 T T
% build (48 states)
- 60| ——— Reduced (30 dates) |
-
& 80
[u]
E_1m 1 1
_ 180 T T
) Om N
=
§-1110—_ -
&30 P S NP AT S i
540 1 1
10° 10' 10° 10°
Frequency (rad's)
w Preview Pole - Zero Maps of build and Reduced Model 100
100 T T T T T T — T T
. i) B : o
Name: build = 0.042 & -\%.03@ D..EIPZ‘I .D.D‘I4 build (48 states)
Type: state-space model I'—S 0:065..,... . 2. ..® EE ” ns Reduced (30 states)
Order: 48 2 50 & B B AT 1
Number of inputs: 1 E 0:14 e mﬂ% - 20
Number of outputs: 1 = L B S ST . o]
s 0 e caaasaareiiiig A
2 e i@ :
= 014 . o Yo 20
= L = . RER T g 1
S -50 B RP " Can
£ 0.065 goe® & B o 60
B 0. D{l-IZ..) EII.DB . 0. D_IZ‘I IEI.EVIJJ- IEI.IJ_D'Q Ell 004 BDé
-100 -
4.5 4 35 -3 25 -2 15 & 05 10G 0.5
Real Axis [seDDnds'1}

6-50

The blue x and o marks on the pole-zero map show the near-canceling pole-zero pairs
in the original model that are eliminated from the simplified model. Poles and zeros
remaining in the simplified model are marked with red x and o.

4 Try different simplification tolerances while observing the frequency response of the
original and simplified model. Remove as many poles and zeros as you can while
preserving the system behavior in the frequency region that is important for your

Pole-Zero Simplification

application. Optionally, examine absolute or relative error between the original and

simplified model. Select the error-plot type using the buttons on the Pole-Zero
Simplification tab.

4\ Model Reducer - Pole-Zero Simplification - build

MODEL REDUCER POLE - ZERO SIMPLIFICATION

vEw AR

Iyl
()

Simplification of pole - zero pairs.

~
Wodel: ’bulId—V| Model response |>
@ ™ Absolute error plot
Order: 48 states == Simplify Mare | 0.0005 o) piot 'f:rlem|e| .
MODEL POLE - ZERO SIMPLIFICATION VISUALIZE CREATE a
Data Browser ® | Pole-Zero Simplification - build |
¥ Models Relative Error between build and Reduced Model &) © [
build T T T T T T T
0+ | Error of reduced model (30 5tates}| =
g
v -1or .
o
=
=201 \ 7
;§> /l kﬁ
£ -30 ~ \ n
o \H__‘__ J__r_,_./L \
-40 i 1 1 1 1 1 1 1]
103 107 103 1072 107! 10° 10’ 10° 10°

Frequency (rad/s)

- Zero Maps of build

For more information about using the analysis plots, see “Visualize Reduced-Order
Models in the Model Reducer App” on page 6-67.

5 When you have a simplified model that you want to store and analyze further, click

[}. The new model appears in the Data Browser with a name that reflects the
reduced model order.

6-51

6 Model Simplification

4\ Model Reducer - Pole-Zero Simplification - build

*

MODEL REDUCER POLE - ZERO SIMPLIFICATION

FRAEER -l =)

Simplification of pole - zero pairs. -
Wodel: ’bulId—V| Model response
@ ™ Absolute error pl
Order: 45 states Less S More 20004 | 5 o bive error piot

»l

POLE - ZERO SIMPLIFICATION VISUALIZE
ata Browser 1 ® | Pole-Zero Simplification - build |

¥ Models Relative Error between build and Reduced Model

build I T T T
uildReduced30 0 | Error of reduced model (30 states}| i

After creating a reduced model in the Data Browser, you can continue changing the
simplification parameters and create reduced models with different orders for
analysis and comparison.

You can now perform further analysis with the reduced model. For example:

» Examine other responses of the reduced system, such as the step response or Nichols
plot. To do so, use the tools on the Plots tab. See “Visualize Reduced-Order Models in
the Model Reducer App” on page 6-67 for more information.

» Export reduced models to the MATLAB workspace for further analysis or control

design. On the Model Reducer tab, click i Export.

Generate MATLAB Code for Pole-Zero Simplification

To create a MATLAB script you can use for further model-reduction tasks at the command

line, click Create Reduced Model, and select Generate MATLAB Script.

6-52

_.,

Pole-Zero Simplification

odel response |>

Absolute error plo
Create

Reduced Model «

VISUALIZE

Create Reduced Model

build | |> Create reduced
Relative Errbi model in data browser.

Generate MATLAB Script
E Generate MATLAE script
to create the reduced model.

Model Reducer creates a script that uses the minreal command to perform model
reduction with the parameters you have set on the Pole-Zero Simplification tab. The
script opens in the MATLAB editor.

Pole-Zero Cancellation at the Command Line

To reduce the order of a model by pole-zero cancellation at the command line, use
minreal.

Create a model of the following system, where C is a PI controller, and G has a zero at

3 x 1078 rad/s. Such a low-frequency zero can arise from derivative action somewhere in
the plant dynamics. For example, the plant may include a component that computes speed
from position measurements.

6-53

6 Model Simplification

6-54

T(s)

r —:ﬁ)_—‘ C(s)

Gs) -y

L

G = zpk(3e-8,[-1,-31,1);
C = pid(1,0.3);

T = feedback(G*C,1)

T =

(s+0.3) (s-3e-08)

s (s+4.218) (s+0.7824)

Continuous-time zero/pole/gain model.

In the closed-loop model T, the integrator (1/s) from C very nearly cancels the low-
frequency zero of G.

Force a cancellation of the integrator with the zero near the origin.

Tred minreal (T, le-7)

Tred

(s+4.218) (s+0.7824)

Continuous-time zero/pole/gain model.

By default, minreal reduces transfer function order by canceling exact pole-zero pairs or
near pole-zero pairs within sqrt (eps). Specifying 1e-7 as the second input causes

minreal to eliminate pole-zero pairs within 10~7 rad/s of each other.

The reduced model Tred includes all the dynamics of the original closed-loop model T,
except for the near-canceling zero-pole pair.

Compare the frequency responses of the original and reduced systems.

Pole-Zero Simplification

Magnitude (dB)

Phase (deq)

bode(T,Tred, 'r--")
legend('T', 'Tred")

Bode Diagram
E T, T T T

45 /\ - J-———Tred]

1010 108 10°8 104 102 10° 102
Frequency (rad/s)

Because the canceled pole and zero do not match exactly, some extreme low-frequency
dynamics evident in the original model are missing from Tred. In many applications, you
can neglect such extreme low-frequency dynamics. When you increase the matching
tolerance of minreal, make sure that you do not eliminate dynamic features that are
relevant to your application.

6-55

6 Model Simplification

6-56

See Also

Apps
Model Reducer

Functions
minreal | sminreal

Related Examples

. “Balanced Truncation Model Reduction” on page 6-17
. “Mode-Selection Model Reduction” on page 6-57

. “Model Reduction Basics” on page 6-2

Mode-Selection Model Reduction

Mode-Selection Model Reduction

Model selection eliminates poles that fall outside a specific frequency range of interest.
This method is useful when you want to focus your analysis on a particular subset of
system dynamics. For instance, if you are working with a control system with bandwidth
limited by actuator dynamics, you might discard higher-frequency dynamics in the plant.
Eliminating dynamics outside the frequency range of interest reduces the numerical
complexity of calculations with the model. There are two ways to compute a reduced-
order model by mode selection:

* At the command line, using the freqsep command.

* In the Model Reducer, using the Mode Selection method.

For more general information about model reduction, see “Model Reduction Basics” on
page 6-2.

Mode Selection in the Model Reducer App

Model Reducer provides an interactive tool for performing model reduction and
examining and comparing the responses of the original and reduced-order models. To
approximate a model by mode selection in Model Reducer:

1 Open the app and import an LTI model to reduce. For instance, suppose that there is
a model named Gms in the MATLAB workspace. The following command opens Model
Reducer and imports the model.

modelReducer (Gms)

In the Data Browser, select the model to reduce. Click Mode Selection.

6-57

6 Model Simplification

4\ Model Reducer

MODEL REDUCER

J H = &

PLOTS

VIEW

[Jata Browser

w Podels

In the Mode Selection tab, Model Reducer displays a plot of the frequency
response of the original model and a reduced version of the model. The app also
displays a pole-zero map of both models.

6-58

Mode-Selection Model Reduction

Mode Selection - Gms [

Responses of Gms and Reduced Model

- 0 T HER IR R EA] H T T HERARII
o —" I
= o ——— Gms (18 statas)
o ——— Raducad (3 slates
3 -100 - 4 \%EN:‘; uced (3 states) | |
= \
[
m
E_zm I o I I il | H T
0 T — T T T T
= w
(i} I
=2
ﬁ -180 | .
‘—___________
o
ﬂ__:]ﬂ} | i e a el i T | i | i S P |
1072 10" 108 10! 10° 107 104
Frequency (rad's)
Pole ! Zero Maps of Gms and Reduced Model
400 55 e
-~ ' ' B . |—— Bms (18 states)
-"E" 200 _13'9 — Reduced (9 states)
E 897, 2
m 5%'1,9 = W i ‘
3 1
E‘ 097 o
E H5/1 L
2200 o Y]
E
400 08 : : :
-500 =400 -300 =200 =100 0 100

Real Axis [semnds" }

The pole-zero map marks pole locations with x and zero locations with o.

Note The frequency response is a Bode plot for SISO models, and a singular-value
plot for MIMO models.

6-59

6 Model Simplification

3 Model Reducer eliminates poles that lie outside the shaded region. Change the
shaded region to capture only the dynamics you want to preserve in the reduced
model. There are two ways to do so.

* On either the response plot or the pole-zero map, drag the boundaries of the
shaded region or the shaded region itself.

* On the Mode Selection tab, enter lower and upper cutoff frequencies.

-

\ Model Reducer - Mode Selection - Gms EI@
MODEL REDUCER MODE SELECTION BEd sl ok
Model | Gms Lower cutoff: (0.077 O Model response @ |>
Absolute error plot
. . ptions. Create
Order: 18 states Upper cutoff: 33 Relative error plot Red | Model
MODEL MODE SELECTION VISUALIZE OPTIONS CREATE
Data Browser ™ - | Mode Selection - Gms |
¥ Models Responses of Gms and Reduced Model
Gms - 0 1 T T T T
g 3
o [f—
3 100 - 4 > = 1
c
o
[u]
= o . ol . il . . 1 1
-200
0 T T T T T
: i E
=]
=2
ﬁ -180 [L | » 1
=
102 107 700 10" 107 10° 10°
Frequency (rad's)
w Preview Pole / Zero Maps of Gms and Reduced Model (& & ™ H
400 08 T T — - DZIB ~ T
it HE= g 26, H
Tﬁ' s]::te space model T Gms (18 states)
: — 'w
order: 1 B — Reduced (10 states) | |
Nurber of inputs: 1 E Q
Numkber of outputs: 1 = ﬁ ____________]
‘E Sl
Fund
o
£
< - 4
o
E
04
-200 100
Real Axis (seconds™)

When you change the shaded regions or cutoff frequencies, Model Reducer
automatically computes a new reduced-order model. All poles retained in the reduced

6-60

Mode-Selection Model Reduction

model fall within the shaded region on the pole-zero map. The reduced model might
contain zeros that fall outside the shaded region.

4 Optionally, examine absolute or relative error between the original and simplified
model. Select the error-plot type using the buttons on the Mode Selection tab.

.

4\ Model Reducer - Mode Selection - Gms EI@

MODEL REDUCER MODE SELECTION

™ Model response

Model: |Gms w | Lower cutoff: |0.077

Order: 18 states Upper cutoff: 33

& >

Options. Create
Reduced Model ~

™ Absolute error plot

© Relative error plot

MODEL MODE SELECTION VISUALIZE PTIONS CREATE

Data Browser ® [Meode Selection - Gms |

¥ Models Relative Error between Gms and Reduced Model

Gms 100 | T T

| Error of reduced model {10 5tates}|
% 50 - g
wn
o
=
2 or b | 3 i
5
3
E!
g st M |
-100 — — :
1072 107! 10° 10 10° 10° 104
Frequency (rad,
aps of

For more information about using the analysis plots, see “Visualize Reduced-Order
Models in the Model Reducer App” on page 6-67.

5 When you have one or more reduced models that you want to store and analyze

further, click [:) The new model appears in the Data Browser.

6-61

6 Model Simplification

4\ Model Reducer - Mode Selection - Gms EI@

MODEL REDUCER MODE SELECTION

-~
Model | Gms | Lower cutoff: |0.077 WTLE TEEITIEE @ |> L\\’

™ Absolute error plot
0

Oraer: 18 states Upper cutoff. |53 O Relative error plot Reduced Model v
MODE SELECTION VISUALIZE OFTIONS CREATE
Data Browser (O] | Mode Selection - Gms |
¥ Models Relative Error between Gms and Reduced Model
Gms 100 |

\ GmsReducedl0 J | Error of reduced model (10 5tates}|

50

— . —a -

After creating a reduced model in the Data Browser, you can continue adjusting the
mode-selection region to create reduced models with different orders for analysis and
comparison.

es (dB}

You can now perform further analysis with the reduced model. For example:

» Examine other responses of the reduced system, such as the step response or Nichols
plot. To do so, use the tools on the Plots tab. See “Visualize Reduced-Order Models in
the Model Reducer App” on page 6-67 for more information.

» Export reduced models to the MATLAB workspace for further analysis or control

design. On the Model Reducer tab, click i Export.
Generate MATLAB Code for Mode Selection

To create a MATLAB script you can use for further model-reduction tasks at the command
line, click Create Reduced Model, and select Generate MATLAB Script.

6-62

Mode-Selection Model Reduction

odel response D

Absolute error plo
Create

Reduced Model «

VISUALIZE

Create Reduced Model

build | |> Create reduced
Relative Errbi model in data browser.

Generate MATLAB Script
E Generate MATLAE script
to create the reduced model.

Model Reducer creates a script that uses the freqsep command to perform model
reduction with the parameters you have set on the Mode Selection tab. The script opens
in the MATLAB editor.

Mode Selection at the Command Line

To reduce the order of a model by mode selection at the command line, use freqsep.
This command separates a dynamic system model into slow and fast components around a
specified frequency.

For this example, load the model Gms and examine its frequency response.

load modeselect Gms
bodeplot (Gms)

6-63

6 Model Simplification

Bode Diagram

on
=
.

100 |

Magnitude (dB)

W—

=
=
[]

Gms has two sets of resonances, one at relatively low frequency and the other at relatively
high frequency. Suppose that you want to tune a controller for Gms, but the actuator in
your system is limited to a bandwidth of about 3 rad/s, in between the two groups of
resonances. To simplify calculation and tuning using Gms, you can use mode selection to

10°1 10" 10’

Frequency (rad/s)

eliminate the high-frequency dynamics.

[Gms s,Gms f] = freqsep(Gms,30);

freqsep decomposes Gms into slow and fast components such that Gms = Gms_s +
Gms_f. All modes (poles) with natural frequency less than 30 are in Gms_s, and the

higher-frequency poles are in Gms_f.

bodeplot(Gms,Gms_s,Gms_f)
legend('original', 'slow', 'fast')

6-64

0%

Mode-Selection Model Reduction

Magnitude (dB)

-1

-1

n
=
T
=
i
!
i

00 ﬂk'ﬁ;;==-u“)

| \

102 10°1 10" 10’ 102 03 10*
Frequency (rad/s)

The slow component, Gms_s, contains only the lower-frequency resonances and matches
the DC gain of the original model. Examine the orders of both models.

order(Gms)

ans = 18

order(Gms_s)

ans = 10

When the high-frequency dynamics are unimportant for your application, you can use the
10th-order Gms_s instead of the original 18th-order model. If neglecting low-frequency
dynamics is appropriate for your application, you can use Gms_f. To select modes that fall
between a low-frequency and a high-frequency cutoff, use additional calls to freqsep.

6-65

6 Model Simplification

See Also
Model Reducer | fregsep

Related Examples

. “Balanced Truncation Model Reduction” on page 6-17
. “Pole-Zero Simplification” on page 6-47
. “Model Reduction Basics” on page 6-2

6-66

Visualize Reduced-Order Models in the Model Reducer App

Visualize Reduced-Order Models in the Model Reducer
App

The plotting tools in the Model Reducer app let you examine and compare time-domain
and frequency-domain responses of the original model and the reduced models you create
in the app. Use these tools to help verify that the reduced-order model you choose to work
with preserves the system behaviors that are important for your application.

For more general information about model reduction, see “Model Reduction Basics” on
page 6-2.

Error Plots

By default, for any model reduction method, Model Reducer shows a frequency-response
plot of both the original and reduced models. This plot is a Bode plot for SISO models,
and a singular-value plot for MIMO models.

To more closely examine the differences between an original model and a reduced model,
you can use absolute error or relative error plots. On any model reduction tab, click
Absolute error plot or Relative error plot to view these plots.

4\ Model Reducer - Pole-Zero Simplification - build - O *
MODEL REDUCER POLE - ZERO SIMPLIFICAT] 834 BEaes ()~
Simplification of pole - zero pairs. -
Modet |build - Model response
™ Absolute error plot
Order: - q 0.0005 . Create
HEFEHERES Less Simplify Mare O Relative error plot e]
MODEL POLE - ZERO SIMPLIFICATION VISUALIZE CREATE =
Data Browser ® | Pole-Zero Simplification - build]_
¥ Models Relative Error between build and Reduced Model &) ©) [
build T T T T T T
0+ | Error of reduced model {30 5tates}| =
g
y 10 F
o
=
= 20 it
: A
£ -30 ~ \
o __.__ J__r_,_./L \
-40
1073 104 1073 10°2 107! 10° 10" 10° 10°
Frequency (rad/s)
- Zero Maps of build

6-67

6 Model Simplification

* Absolute error plot — Shows the singular values of G-Gr, where G is the original
model and Gr is the current reduced model.

* Relative error plot — Shows the singular values of (G-Gr) /G. This plot is useful
when the model has very high or very low gain in the region that is important to your
application. In such regions, absolute error can be misleading.

For SISO models, the singular-value plot is the magnitude of the frequency response.
Response Plots

After you click [:) to add one or more reduced models to the Data Browser, compare
additional responses of the original and reduced models using the Plots tab.
Create New Response Plot

In the Data Browser, select one or more models to plot. (Ctrl-click to select multiple
models.) Then, on the Plots tab, click the type of plot you want to create.

4\ Model Reducer - Balanced Truncation - build EI@

MODEL REDUCER
ol GIL 7L e
%
\\J O x WO

Step Bode Impulse Nyquist Nicholz Singular ... Pole/Zero... VO Pole/Z...

build, buildReducedd

SELECTED MODEL PLOTS

Data Browser

w Models

Responses of build and Reduced Model
0 T T T

buildReducedd
buildReducedd
buildReducedl0
buildReduced18

build (48 states)

- _'_4_,_,_,———/\\/\?0& ——— Raduced ([4 8 10 18] states)

Magnitude (dB}

e (deg)

Model Reducer creates the plot.

6-68

Visualize Reduced-Order Models in the Model Reducer App

" Balanced Truncation - build | Step Plot 1

Amplitude

Step Response

build
buildReducedd

Add Model to Existing Plot

In the Data Browser, select the model to add. Then, on the Plots tab, click the icon

8 10 12
Time (seconds)

14

16

18

20

corresponding to the plot you want to update. Plots you have created appear on the left

side of the plot gallery.

6-69

6 Model Simplification

.

4\ Model Reducer - Step Plot 1 [5|

ODEL R R PLOTS RESPO 0 B I
N\ x 0¥ [-
@] buidReduced1d o Ex-to- =

Step Plot 1 Step Bode Impulse Nyquist Nicholz Singular ... Pole/Zero ... VO Pole/Z..
SELECTED MoDEL ﬂmg— —
Data Browser ® | Balanced Truncation - build Step Plot1l |)

R —
w Models

build
buildReduceds %107 Step Response

buildReduceds 8 T T T T T T . g y

Mducedlu) build

buildReducedl® ~ buildReduced4 | |

Model Reducer updates the plot with the new model.

Tip To expand the gallery view, click .

Plot Characteristics

On any plot in Model Reducer:

* To see response information and data values, click a line on the plot.

6-70

Visualize Reduced-Order Models in the Model Reducer App

Amplitude

System: buildReduced10
Time (seconds): 0.643

il
Amplitude: -0.00633
I| Order: 10
£
_B 1 I I I I
1] 2 4 6 8 10

Time (seconds)

To view system characteristics, right-click anywhere on the plot, as described in
“Frequency-Domain Characteristics on Response Plots” on page 8-10.

6-71

6 Model Simplification

Impulse Response

w1072 @o0MEB
10 T T T T T T
buildReducedd
gk buildReducedi10|
3
s b Systemns | N
Characteristics | P'Ekﬂesponse
4t Grid Settling Time |
Mormalize
% 91 Full View -
=
% Properties ...
<
fl
-2 =
Plot Tools

Mouse over any plot to access plot tools at the upper right corner of the plot.

Balanced Truncation - build

¢ Impulse Plot 1

%1073

B
&

Impulse Response

10 T

6-72

(@@@E)

T . ™

buildReducedd
buildReducedi0

Visualize Reduced-Order Models in the Model Reducer App

@ and @ — Zoom in and zoom out. Click to activate, and drag the cursor over the
region to zoom. The zoom icon turns dark when zoom is active. Right-click while zoom
is active to access additional zoom options.Click the icon again to deactivate.

Error between Gms and Reduced Mode (+] ™ B
| T
| Error of reduced model (10 5tates}|

Zoom QOut Shift-Click

Reset to Criginal View

Wr Zoom Options L} ! v | Unconstrained Zoom
Horizontal Zoom
| Vertical Zoom

-ID:' \ﬂ1 1.E2 1.E3 A -

Frequency (rad's)
Zero Maps of Gms and Reduced Model

. 05204 026, —ndo

) T . |

"{H‘ — Pan. Click to activate, and drag the cursor across the plot area to pan. The pan
icon turns dark when pan is active. Right-click while pan is active to access additional
pan options. Click the icon again to deactivate.

E — Legend. By default, the plot legend is active. To toggle the legend off and on,
click this icon. To move the legend, drag it to a new location on the plot.

To change the way plots are tiled or sorted, use the options on the View tab.

6-73

6 Model Simplification

4\ Model Reducer - Pale-Zero Simplification - build
p

POLE - ZERO SIMPLIFICATION

MODEL REDUCER

fz| Tabs Position +

™1 Shrink Tabs to Fit

Data Browser ® | | Pole-Zero Simplification - build |
¥ Models | Relative Error between build and Reduced Model
b T T T T T

Model Reducer

Related Examples

. “Balanced Truncation Model Reduction” on page 6-17
. “Mode-Selection Model Reduction” on page 6-57

. “Pole-Zero Simplification” on page 6-47

6-74

Linear Analysis

75

Time Domain Analysis

+ “Plotting System Responses” on page 7-2

* “Time-Domain Responses” on page 7-20

* “Time-Domain Response Data and Plots” on page 7-21

* “Time-Domain Characteristics on Response Plots” on page 7-24

* “Numeric Values of Time-Domain System Characteristics” on page 7-29
* “Time-Domain Responses of Discrete-Time Model” on page 7-31

* “Time-Domain Responses of MIMO Model” on page 7-34

* “Time-Domain Responses of Multiple Models” on page 7-36

* “Joint Time-Domain and Frequency-Domain Analysis” on page 7-40
* “Response from Initial Conditions” on page 7-45

» “Import LTI Model Objects into Simulink” on page 7-48

* “Analysis of Systems with Time Delays” on page 7-53

7 Time Domain Analysis

Plotting System Responses

This example shows how to plot the time and frequency responses of SISO and MIMO
linear systems.

Time Responses

For illustration purposes, create the following third-order transfer function:

sys = tf([8 18 32],[1 6 14 24])

sys =

8 s™2 + 18 s + 32

sS®3 + 6 s™2 + 14 s + 24

Continuous-time transfer function.

You can plot the step and impulse responses of this system using the step and impulse
commands:

subplot(2,1,1)
step(sys)
subplot(2,1,2)
impulse(sys)

7-2

Plotting System Responses

Amplitude

0
0 0.5 1 1.5 2 25 3 35 4 4.5
Time (seconds)
Impulse Response
10 - - - - - - -
1]
=
—
= 57 .
[=R
E
=
-
0 ".E'“““‘-h—__. """" Lt T 1 I
0 0.5 1 1.5 2 25 3 35 4

Time (seconds)

You can also simulate the response to an arbitrary signal, for example, a sine wave, using
the Lsim command. The input signal appears in gray and the system's response in blue.

clf
t =0:0.01:4;
u = sin(10*t);

lsim(sys,u,t) %

u,t define the input signal

7 Time Domain Analysis

Linear Simulation Results

0Bl {1 'II |I| [I |

Amplitude

' ' , [| | |
0 II |I | || | || | || | ||| I| ||| |I || I| ||| | |I | I| | ||| | |||
o a | |II | II| | [II| . |'| . |]
Ll N [1| ' L
0 : hl i : h: ! ' E: f : EI ! : n: f [E: !
06 : H I : x:! : M: : b | : E:J : M:l
| kﬁ : Tj : .U/ : }/ || \ .J
08T '. .'I I'. :.'n | | . :. ,'
_1D ;5 %I {5) é Iiﬁ ; ié 4

Time (seconds)

You can use the plotting commands with continuous or discrete TFE, SS, or ZPK models.

For state-space models, you can also plot the unforced response from some given initial
state, for example:

A=1[-0.83.6-2.1;-3 -1.2 4.8;3 -4.3 -1.11;
B=1[0; -1.1; -0.2];

C=1[1.2 0 0.6];

D= -0.6;

G = ss(A,B,C,D);

x0 = [-1;0;2]; % initial state
initial(G,x0)

grid

Plotting System Responses

Amplitude

Response to Initial Conditions

—EE 1 1 1 1 1 1 1 1
0 2 4 6 B 10 12 14 16 18
Time (seconds)

Frequency Responses

Frequency-domain analysis is key to understanding stability and performance properties
of control systems. Bode plots, Nyquist plots, and Nichols chart are three standard ways
to plot and analyze the frequency response of a linear system. You can create these plots
using the bode, nichols, and nyquist commands. For example:

sys = tf([8 18 32],[1 6 14 24])
sys =

8 s™2 + 18 s + 32

7-3

7 Time Domain Analysis

Magnitude (dB)

Phase (deq)

A
£

S™3 + 6 s™2 + 14 s + 24

Continuous-time transfer function.

bode(sys)
grid

10

Bode Diagram

00
10°

nyquist(sys)
grid

107
Frequency (rad/s)

Plotting System Responses

Imaginary Axis

Nyquist Diagram

1.5 T :
2dB p4B 2 dB

=
n

o
1

1
=
tn

nichols(sys)
grid

0.5
Real Axis

7-7

7 Time Domain Analysis

Michols Chart
40 - - T - - - -

Open-Loop Gain (dB)

4048 P
180 -135 90 45 0 45 90 135 180
Open-Loop Phase (deg)

40 —— 4

Pole/Zero Maps and Root Locus

The poles and zeros of a system contain valuable information about its dynamics, stability,
and limits of performance. For example, consider the feedback loop in Figure 1 where

—(2s+1)
24 3z42

y =

Plotting System Responses

Plant

Figure 1: SISO Feedback Loop.

For the gain value k = 0.7, you can plot the closed-loop poles and zeros using pzmap:

s = tf('s');

G = -(2*%s+1)/(s™2+3*s+2);
k =0.7;

T = feedback(G*k,1);
pzmap(T)

grid, axis([-2 0@ -1 17])

7 Time Domain Analysis

Pole-Zero Map
0.86 . 076 064 05 ..034 016
0.8 F E ey iy . = . . .
0.94
D6 -
@4t
e {.985
S .
@ EZ_ _____ 175 15 125 LN .75 03 0.25 i .
g-c.z .
= 0085
o4t
E
06 .
0.94 _ e e
0.8 B N e R , :
0.86 076" D.64 0.5 034 016
—1 1 1 1 | 1 1 1 1 i LI
2 18 16 -14 12 A 08 D6 04 D2 0

Real Axis {secands'1]

The closed-loop poles (marked by blue x's) lie in the left half-plane so the feedback loop is
stable for this choice of gain k. You can read the damping ratio of the closed-loop poles
from this chart (see labels on the radial lines). Here the damping ratio is about 0.7,
suggesting a well-damped closed-loop response as confirmed by:

clf
step(T)

7-10

Plotting System Responses

Step Response
I: T T T

Amplitude

0 1 2 3 4 5 G

Time (seconds)

To further understand how the loop gain k affects closed-loop stability, you can plot the
locus of the closed-loop poles as a function of k:

rlocus(G)
grid

7-11

7 Time Domain Analysis

Root Locus

=i

09 082 066 04
0.945 e

=
fare

=
fas

0.974

=
=

099
r0.997.

=
D‘EM
: d

h0.997 -
0,99

o
[RS]

Imaginary Axis {second5'1]
=
I

[0.045 S Yean
097 082. 066 04

25 -2 15 -1 05 0 0.5 1 1.5 2 25
Real Axis {seconds”}

Clicking where the locus intersects the y axis reveals that the closed-loop poles become

unstable for kK = 1.51. So the loop gain should remain smaller than 1.5 for closed-loop
stability.

7-12

Plotting System Responses

Imaginary Axis (seconds™')

Root Locus
1 T T T T T
Co0g
oq [0:945 i
08 ['p.974 System: G T
: ’ Gain: 1.5
““Foes Pole: 0.00339 + 0.703i 1
~f ' Damping: -0.00482
0.2 bo.0a7. i ellni Owershoot (%): 102 |
2.5 2 15 | i -p5c - Frequency (rad/s): 0.703
0o pogey -
o fose |
0 |-0874 1
Aok ' -
I £-71 : -
S 087 082- 066 04
1 | 1 ¥ 1 1 1 1 1 1 1
25 2 1.5 1 05 0 05 1 15 2 2

Real Axis {secnnds'1]

Response Characteristics

tn

Right-clicking on response plots gives access to a variety of options and annotations. In
particular, the Characteristics menu lets you display standard metrics such as rise time
and settling time for step responses, or peak gain and stability margins for frequency

response plots.

Using the example from the previous section, plot the closed-loop step response:

step(T)

7-13

7 Time Domain Analysis

Step Response

Amplitude

0 1 2 3 4 5 B 7
Time (seconds)

Now, right-click on the plot to display the Peak Response and Settling Time
Characteristics, and click on the blue dots to read the corresponding overshoot and
settling time values:

7-14

Plotting System Responses

Step Response
L l T T T T

[
I
T

=1
3]
1

Amplitude

System: T

:::l
[=r]
1
I:
I:
I:
I:
I:
I:
I:
I:
I:
I:
¥
5
5
1

) System: T

|
!
| Peak amplitude: -0.82 ! |
- Overshoot (%): 52.2 :
| Attime (seconds) 1.5 i
|
|

=
o

=
[¢=]

Time (seconds)
Analyzing MIMO Systems

All commands mentioned so far fully support multi-input multi-output (MIMO) systems. In

the MIMO case, these commands produce arrays of plots. For example, the step response
of the two-input, two-output system

)
0.3 -0.2 ; 0 -1.3 -1.7; 0.4 1.7 -1.31;

is a 2-by-2 array of plots where each column shows the step response of a particular input
channel:

step(sys)

7-15

7 Time Domain Analysis

Step Response
From: In{1) From: In(2)
III
—~ 0.2 \
- |
5 \
O 0.4 |
5 \
= |
0.6 \
© \\#,
= -
=2 08
=1
£ of 71 E.- —
<
-1
o
5
g 2
=
=3
-4 \Q:'L-\#

0 2 4 6 8 0 2
Time (seconds)

If desired, you can group all four responses on a single plot by right-clicking on the plot
and selecting the I/0 Grouping -> All submenu. The resulting plot is shown below.

7-16

Plotting System Responses

=]
th

(=]

Amplitude

=]

Step Response

th

System: sys

/O In(2) to Out(1)
Time (seconds): 1.69
Amplitude: -0.766

e R e e e T T T T T T T T T T T T T ———

]
[
ad
n
[=r]

Time (seconds)

o

The following additional plots are useful for analyzing MIMO systems:

For example, plot the peak gain of sys as a function of frequency:

Singular value plot (sigma), which shows the principal gains of the frequency

response
Pole/zero map for each 1/O pair (iopzplot)

sigma(sys)
grid

7-17

7 Time Domain Analysis

7-18

Singular Values {dB)

Singular Values
20 . . ;

—EU 1 1 1
102 107! 10° 10 102
Frequency (rad/s)

Comparing Systems

You can plot multiple systems at once using any of the response plot commands. You can
assign a specific color, marker, or line style to each system for easy comparison. Using the
feedback example above, plot the closed-loop step response for three values of the loop
gain Kk in three different colors:

kl = 0.4;

Tl = feedback(G*kl,1);
k2 = 1;

T2 = feedback(G*k2,1);

step(T,'b',T1,'r"',72,'g")
legend('k = 0.7','k = 0.4",'k = 1")

See Also

Amplitude

Time (seconds)

See Also
bode | step

More About
. “Time-Domain Responses” on page 7-20
. “Frequency-Domain Responses” on page 8-2

Step Response
k=07
k=041
k=1
-
Lo H’"‘-u.,_._._ [
G] 10 12

14

7-19

7 Time Domain Analysis

Time-Domain Responses

7-20

When you perform time-domain analysis of a dynamic system model, you may want one or
more of the following:

A plot of the system response as a function of time.
Numerical values of the system response in a data array.

Numerical values of characteristics of the system response such as peak response or
settling time.

Control System Toolbox time-domain analysis commands can obtain these results for any
kind of dynamic system model (for example, continuous or discrete, SISO or MIMO, or
arrays of models) except for frequency response data models.

To obtain numerical data, use:

step,impulse,initial,lsim — System response data at a vector of time points.

stepinfo,lsiminfo — Numerical values of system response characteristics such as
settling time and overshoot.

To obtain response plots, use:

step,impulse,initial,lsim — Plot system response data, visualize response
characteristics on plots, compare responses of multiple systems on a single plot.

stepplot,impulseplot,initialplot,lsimplot — Create system response plots
with more plot-customization options. For details about plot customization, see “Plot
Customization”.

Linear System Analyzer — App for plotting many types of system responses
simultaneously, including both time-domain and frequency-domain responses

See Also

Related Examples

“Time-Domain Response Data and Plots” on page 7-21
“Joint Time-Domain and Frequency-Domain Analysis” on page 7-40

Time-Domain Response Data and Plots

Time-Domain Response Data and Plots

This example shows how to obtain step and impulse response data, as well as step and

impulse response plots, from a dynamic system model.
Create a transfer function model and plot its response to a step input at t = 0.

= tf([8 18 32]1,[1 6 14 24]);
step(H);

Step Response

i)

o
[

Amplitude

o
o

n

]

: :
8 2 2.5

Time (seconds)

(]
Cad

o]
n

When call step without output arguments, it plots the step response on the screen.
Unless you specify a time range to plot, step automatically chooses a time range that

illustrates the system dynamics.
7-21

7 Time Domain Analysis

Calculate the step response data from t = 0 (application of the step input) tot = 8 s.
[y,t] = step(H,8);

When you call step with output arguments, the command returns the step response data
y. The vector t contains corresponding time values.

Plot the response of H to an impulse input applied at t = 0. Plot the response with a grid.

opts = timeoptions;
opts.Grid = 'on';
impulseplot(H, opts)

Time Response

Amplitude

Time (seconds)

Use the timeoptions command to define options sets for customizing time-domain plots
with commands like impulseplot and stepplot.

7-22

See Also

Calculate 200 points of impulse response data from t = 1 (one second after application of
the impulse input) to t = 3s.

[y,t] = impulse(H,linspace(1,3,200));

As for step, you can omit the time vector to allow impulse to automatically select a time
range.

See Also

impulse | impulseplot | step | stepplot | timeoptions

Related Examples

. “Time-Domain Characteristics on Response Plots” on page 7-24
. “Time-Domain Responses of Multiple Models” on page 7-36

. “Joint Time-Domain and Frequency-Domain Analysis” on page 7-40
More About
. “Time-Domain Responses” on page 7-20

7-23

7 Time Domain Analysis

Time-Domain Characteristics on Response Plots

This example shows how to display system characteristics such as settling time and
overshoot on step response plots.

You can use similar procedures to display system characteristics on impulse response
plots or initial value response plots, such as peak response or settling time.

Create a transfer function model and plot its response to a step input at t = 0.

H = tf([8 18 32],[1 6 14 24]);
stepplot(H)

Step Responze

18 T T T T T T T T T

Amplitude

|:| 1 1 1 1 1
0 0.3 1 1.3 2 2.3 3 3.3 4 4.3 3

Time (zeconds)

Display the peak response on the plot.

Right-click anywhere in the figure and select Characteristics > Peak Response from
the menu.

7-24

Time-Domain Characteristics on Response Plots

Step Response
1 Bl T T T T T T T T T

o
=
=
‘a
E Systems r
0.6 Characteristics ¥ Peak Response
04 Grid Settling Time
Mormalize Rize Time
0.2 ¥ | Full View Steady State
0 L L L Properties ... L L |
0 0.5 1 15 = =7 =) o 4 45 5

Time (seconds)

A marker appears on the plot indicating the peak response. Horizontal and vertical dotted
lines indicate the time and amplitude of that response.

7-25

7 Time Domain Analysis

Step Responsze

18 T T T T T T T T T

Amplitude

1
0 05 1 1.5 2 25 3 35 4 4.5 5
Time (zeconds)

Click the marker to view the value of the peak response and the overshoot in a datatip.

7-26

See Also

Step Responsze
1 8 T T T T T T T T T

16r | System: H .

i Peak amplitude: 1 69

1.4 - Owershoot (%6 26.5 J
| At time (seconds) 0603 .-

1.2 ! — |
!

g 1 | 7
= .
= I

E na - i
!

06 ! _
!

04 [i
0z I
' !
|

|:| 1 1 1 1 1 1 1 1 1
0 0.3 1 1.3 2 2.3 3 3.3 4 4.3 3

Time (zeconds)

You can use a similar procedure to select other characteristics such as settling time and
rise time from the Characteristics menu and view the values.

See Also

impulse | Lsiminfo | step | stepinfo

Related Examples
. “Numeric Values of Time-Domain System Characteristics” on page 7-29
. “Joint Time-Domain and Frequency-Domain Analysis” on page 7-40

7-27

7 Time Domain Analysis

More About

. “Time-Domain Responses” on page 7-20

7-28

Numeric Values of Time-Domain System Characteristics

Numeric Values of Time-Domain System Characteristics

This example shows how to obtain numeric values of step response characteristics such
as rise time, settling time, and overshoot using stepinfo. You can use similar techniques
with Lsiminfo to obtain characteristics of the system response to an arbitrary input or
initial conditions.

Create a dynamic system model and get numeric values of the system’s step response
characteristics.

H = tf([8 18 32],[1 6 14 24]);
data = stepinfo(H)

data = struct with fields:
RiseTime: 0.2087
SettlingTime: 3.4972
SettlingMin: 1.1956
SettlingMax: 1.6871
Overshoot: 26.5302
Undershoot: 0
Peak: 1.6871
PeakTime: 0.5987

The output is a structure that contains values for several step response characteristics. To
access these values or refer to them in other calculations, use dot notation. For example,
data.Overshoot is the overshoot value.

Calculate the time it takes the step response of H to settle within 0.5% of its final value.

data = stepinfo(H, 'SettlingTimeThreshold',0.005);
t05 = data.SettlingTime

t05 = 4.8896

By default, stepinfo defines the settling time as the time it takes for the output to settle
within 0.02 (2%) of its final value. Specifying a more stringent
'SettlingTimeThreshold' of 0.005 results in a longer settling time.

For more information about the options and the characteristics, see the stepinfo
reference page.

7-29

7 Time Domain Analysis

See Also

lsiminfo | stepinfo

Related Examples

. “Time-Domain Characteristics on Response Plots” on page 7-24

. “Joint Time-Domain and Frequency-Domain Analysis” on page 7-40
More About

. “Time-Domain Responses” on page 7-20

7-30

Time-Domain Responses of Discrete-Time Model

Time-Domain Responses of Discrete-Time Model

This example shows how to obtain a step-response plot and step-response data for a
discrete-time dynamic system model. Obtaining time-domain responses of discrete-time
models is the same as for continuous-time models, except that the time sample points are
limited by the sample time Ts of the model.

You can use the techniques of this example with commands such as impulse, initial,
impulseplot, and initialpot to obtain time-domain responses of discrete-time
models.

Create a discrete-time transfer function model and plot its response to a step input at t =
0.

H=tf([-0.06,0.4],[1,-1.6,0.78]1,0.1);
step(H)

7-31

7 Time Domain Analysis

Amplitude

0 0.5 1 1.5 2 25 3 3.5 4 4.
Time (seconds)

n
n

For discrete-time models, step plots the response at multiples of the sample time,
assuming a hold between samples.

Compute the step response of H between 0.5 and 2.5 seconds.
[y,t] = step(H,0.5:0.1:2.5);

When you specify a time vector for the response of a discrete-time model, the time step
must match the sample time Ts of the discrete-time model. The vector t contains the time
points between 0.5 and 2.5 seconds, at multiples of the sample time of H, 0.1 s. The vector
y contains the corresponding step response values.

7-32

See Also

See Also
impulse | impulseplot | initial | initialplot | step | stepplot

Related Examples
. “Time-Domain Responses of MIMO Model” on page 7-34
. “Time-Domain Responses of Multiple Models” on page 7-36

. “Joint Time-Domain and Frequency-Domain Analysis” on page 7-40
More About
. “Time-Domain Responses” on page 7-20

7-33

7 Time Domain Analysis

Time-Domain Responses of MIMO Model

This example shows how to obtain impulse response data and plots for a multi-input,
multi-output (MIMO) model using impulse. You can use the same techniques to obtain
other types of time-domain responses of MIMO models.

Create a MIMO model and plot its response to a t = 0 impulse at all inputs.

H = rss(2,2,2);

H.InputName = 'Control’;
H.OutputName = 'Temperature';
impulse(H)

Impulse Response

From: Contral(1) From: Control(2)

]
=y

To: Temperature(1)

Amplitude

o
oo
e

To: Temperature(2)

7-34

o

jau]
4. o

o
Md

—

0

Time (seconds)

See Also

impulse plots the response of each output to an impulse applied at each input. (Because
rss generates a random state-space model, you might see different responses from those
pictured.) The first column of plots shows the response of each output to an impulse
applied at the first input, Control(1). The second column shows the response of each
output to an impulse applied at the second input, Control(2).

Calculate the impulse responses of all channels of H, and examine the size of the output.

[y,t] = impulse(H);
size(y)

ans = 1x3

207 2 2

The first dimension of the data array y is the number of samples in the time vector t. The
impulse command determines this number automatically if you do not supply a time
vector. The remaining dimensions of y are the numbers of outputs and inputs in H. Thus,
y(:,1,]) is the response at the i th output of H to an impulse applied at the j th input.

See Also
impulse | impulseplot | initial | initialplot | step | stepplot

Related Examples
. “Time-Domain Responses of Multiple Models” on page 7-36

. “Joint Time-Domain and Frequency-Domain Analysis” on page 7-40
More About
. “Time-Domain Responses” on page 7-20

7-35

7 Time Domain Analysis

Time-Domain Responses of Multiple Models

7-36

This example shows how to compare the step responses of multiple models on a single
plot using step. This example compares the step response of an uncontrolled plant to the
closed-loop step response of the plant with two different PI controllers. You can use
similar techniques with other response commands, such as impulse or initial, to
obtain plots of responses of multiple models.

For this example, obtain two models whose time responses you want to compare, and plot
them on a single step plot. For instance, you can compare a third-order plant G, and the
closed-loop response of G with a controller C1 having integral action.

G = zpk([],[-5 -5 -10],100);

Cl = pid(0,4.4);
CL1 = feedback(G*C1,1);

step(G,CL1);

Time-Domain Responses of Multiple Models

Step Response

Amplitude

o

oo

]

o

on

[5 I

4

3

2
Time (seconds)

When you provide multiple models to step as input arguments, the command displays the

responses of both models on the same plot. If you do not specify a time range to plot,
step attempts to choose a time range that illustrates the dynamics of all the models.

Compare the step response of the closed-loop model with another controller. Specify plot
colors and styles for each response.
€2 = pid(2.9,7.1);

CL2 = feedback(G*C2,1);
step(G, 'b--',CL1,'g-",CL2,'r-")

7-37

7 Time Domain Analysis

Step Response
1.4 T T T T T T
1.2t 4 1
/
AN - —
1 | / -.__,-“'#_ P S -
II III
Bost]
3 |
= {
=1 | I|I
E 10 I II
.,:c 0.6 | | -
[
|
0.4 oo |'I Lk e e o e e e e e e e s e e e]
| |
| I|'_/
{
0.2 .l:.l' 1
fa,.'
/)
E v i i i i i i
0 1 2 3 4 5 6 7
Time (seconds)

You can specify custom plot color and style for each response in the plot. For example,
specifies a solid green line for response CL2. For additional plot customization

Ig -
options, use stepplot.

See Also
Linear System Analyzer | impulse | impulseplot | initial | initialplot | step|

stepplot

7-38

See Also

Related Examples
. “Time-Domain Responses of MIMO Model” on page 7-34

. “Joint Time-Domain and Frequency-Domain Analysis” on page 7-40
More About
. “Time-Domain Responses” on page 7-20

7-39

7 Time Domain Analysis

Joint Time-Domain and Frequency-Domain Analysis

7-40

This example shows how to compare multiple types of responses side by side, including
both time-domain and frequency-domain responses, using the interactive Linear System
Analyzer app.

Obtain models whose responses you want to compare.

For example, compare a third-order plant G, and the closed-loop responses of G with two
different controllers, C1 and C2.

G = zpk([],[-5 -5 -10],100);

Cl = pid(0,4.4);

Tl = feedback(G*C1,1);
C2 = pid(2.9,7.1);

T2 = feedback(G*C2,1);

Open the Linear System Analyzer tool to examine the responses of the plant and the
closed-loop systems.

linearSystemAnalyzer(G,T1,T2)

Joint Time-Domain and Frequency-Domain Analysis

E Linear Systern Analyzer EI@

File Edit Window Help

Step Response

=
-]

T
|

=
=2
T

Amplitude

[4:]
m
J

2 3 4

Time (seconds)

Linear Systern Analyzer

By default, the Linear System Analyzer launches with a plot of the step response of the

three systems. Click EE to add a legend to the plot.
Add plots of the impulse responses to the Linear System Analyzer display.

In the Linear System Analyzer, select Edit > Plot Configurations to open the Plot
Configurations dialog box.

7-41

7 Time Domain Analysis

File Window Help

= Plot Cnnfiguratinrli;..
Refresh Systems
Delete Systerns...
Line Styles...

Viewer Preferences...

N

Select the two-plot configuration. In the Response Type area, select Bode Magnitude for
the second plot type.

PIn:ntCn:nnfiguratin:nns E =] @
Zelect a responze plot configuration RS S
z ?99@?..@.?.99.@&!{3@'
: 3
3 mpulze
4 |inear Simulat..
1 2 1 2 1 20 3
50 |nitial Condition
3 4 3|4 3 11 5| B
B Bode
| 8.4 | |Cancel | | Help | | Apply |

Click OK to add the Bode plots to the Linear System Analyzer display.
Display the peak values of the Bode responses on the plot.

Right-click anywhere in the Bode Magnitude plot and select Characteristics > Peak
Response from the menu.

7-42

Joint Time-Domain and Frequency-Domain Analysis

Magnitude (dB)

Bode Diagram

1d

Linear Systern Analyzer

— e

Plot Types 4 '. |

Systems » -'_ g

Characteristics Peak Response 3

Show L Minimum Stability Margins r R

Grid All Stability Margins :
v Full View i

Properties ...

Markers appear on the plot indicating the peak response values. Horizontal and vertical
dotted lines indicate the frequency and amplitude of those responses. Click on a marker
to view the value of the peak response in a datatip.

Magnitude (dB)

100

Bode Diagram

100 [

O p——r———= = v —

| Systerm: T2
| Peak gain (dB): 0.0578 —_—
| At frequency (rad/s): 3.76)

LU
10!

10" 10! 10°

Frequency (rad/s)

You can use a similar procedure to select other characteristics such as settling time and
rise time from the Characteristics menu and view the values.

You can also change the type of plot displayed in the Linear System Analyzer. For
example, to change the first plot type to a plot of the impulse response, right-click
anywhere in the plot. Select Plot Types > Impulse

7-43

7 Time Domain Analysis

Step Response

m ——
- | - —
= Plot Types Y v Ste
3 Yp P |
E e Systemns ' Impulse ——
Characteristics ! Linear Simulaticn
0 1 2 Grid Initial Condition :
MNormalize Bode
Full View Bode Magnitude
— 100 T Properties ... Nyquist N
o Nichols
4 0 (s = Singular Value 1
o . .
= I | System: T2 Pole/Z
S -100 |- | | Peakgain (dB): 0 Ol CEm E
t;ﬂn I | At frequency (rad /O PolefZero O
300 L | | . ,

200
107" 10° 10' 10° 107

Frequency (rad/s)
The displayed plot changes to show the impulse of the three systems.
See Also

Linear System Analyzer | impulse | impulseplot | initial | initialplot | step|
stepplot

Related Examples
. “Time-Domain Responses of Multiple Models” on page 7-36

More About

. “Time-Domain Responses” on page 7-20

7-44

Response from Initial Conditions

Response from Initial Conditions

This example shows how to compute and plot the response of a state-space (ss) model to
specified initial state values using initial.

Load a state-space model.

load ltiexamples sys dc
sys_dc.InputName = 'Volts';

sys _dc.OutputName = 'w';

sys _dc.StateName = {'Current', 'w'};

sys _dc
sys dc =
A:
Current w
Current -4 -0.03
w 0.75 -10
B:
Volts
Current 2
w 0
C:
Current w
w 0 1
D:
Volts
w 0

Continuous-time state-space model.

This example uses the SISO, 2-state model sys dc. This model represents a DC motor.
The input is an applied voltage, and the output is the angular rate of the motor w. The
states of the model are the induced current i (x1), and w (x2). The model display in the
command window shows the labeled input, output, and states.

Plot the undriven evolution of the motor's angular rate from an initial state in which the
induced current is 1.0 amp and the initial rotation rate is 5.0 rad/s.

7-45

7 Time Domain Analysis

x0 = [1.0 5.0];
initial(sys dc,x0)

Response to Initial Conditions

£n

Ll
n

Cad

[14]
S =
= 525 _
% -
< :
1.5 1
'I -
0.5 . |
0 ' ' \ B E—
0 0.1 0.2 0.3 0.4 0.5 0.6

Time (seconds)

initial plots the time evolution from the specified initial condition on the screen.
Unless you specify a time range to plot, initial automatically chooses a time range that
illustrates the system dynamics.

Calculate the time evolution of the output and the states of sys dc fromt =0
(application of the step input) tot =1 s.

t =0:0.01:1;
[y,t,x] = initial(sys dc,x0,t);

7-46

See Also

The vector y contains the output at each time step in t. The array x contains the state
values at each time step. Therefore, in this example x is a 2-by-101 array. Each row of x
contains the values of the two states of sys dc at the corresponding time step.

See Also

impulse | initial | initialplot | step

Related Examples

. “Time-Domain Response Data and Plots” on page 7-21

. “Numeric Values of Time-Domain System Characteristics” on page 7-29
More About

. “Time-Domain Responses” on page 7-20

7-47

7 Time Domain Analysis

Import LTI Model Objects into Simulink

7-48

Use the LTI System block to import linear system model objects into Simulink. You can
simulate linear systems represented as LTI model objects, and incorporate such systems
as elements of Simulink models of more complex systems.

In the block parameters, set the LTI system variable parameter to the LTI model to

import. For state-space models, set the Initial states parameter to a vector to specify
non-zero initial states.

Simulate LTI Model in Simulink

The LTISystemBlockSimulation model shows how to use an LTI System block to
simulate the response of a SISO transfer function to a step input.

]

h
h

I

tf(1,[1 2 5])

LTl System Block

To specify a model for the LTI System block, set the LTI system variable block
parameter to either:

» The variable name of an LTI model in the MATLAB® workspace or model workspace,
such as sys.

* A MATLAB expression that evaluates to an LTI model, such as tf(1,[1 1]).

For example, you can specify a state-space (ss), zero-pole-gain (zpk), or transfer function
(tf) model. You can simulate SISO models or MIMO models, and continuous-time or
discrete-time models.

In LTISystemBlockSimulation model, the LTI system variable parameter is a
MATLAB expression, tf(1,[1 2 5]), which creates a continuous-time SISO transfer
function. If the specified system is a state-space (ss) model, then you can specify initial
state values by setting the Initial states parameter.

Simulate the model, and examine the result in the scope.

Import LTI Model Objects into Simulink

4 = =] &3

File Tools View Simulation Help o

@-a4® P =R RO SR I R 7

Ready Sample based | T=12.000

7-49

7 Time Domain Analysis

o E - EE

7-50

This example simulates the system response to a step input at t = 2 s. Use the LTT System
block to import an LTI model object anywhere in your Simulink model to simulate the
linear system response to any input.

Import MIMO LTI Model into Simulink

This model shows how to use an LTI System block to represent a MIMO linear system in
Simulink®.

The LTI System block has one input and one output, even when you specify a MIMO
model for the block. In that case, the block input and output become vector signals. For
instance, the model LTISystemBlockMIMO uses an LTI system block to represent a
MIMO plant in a control system.

Plis) ——W

h

Plis) —————

Pl Controller 1 LTI System Block

In this model, the LTI System specified in the block is Gm, a 2-output, 2-input transfer
function model stored in the model workspace. A Mux block combines the two controller
outputs into a vector signal for the LTI System block input. Similarly, a Demux block
separates the vector output of the LTI System block into two scalar signals.

Simulate the model, and examine the result in the scope.

Import LTI Model Objects into Simulink

4 = =] &3

File Tools View Simulation Help o

@- 40P = | Q- - F -

Ready Sample based | T=250.000

7-51

7 Time Domain Analysis

This example simulates a closed-loop system response to a t = 50 s step at the first input

and at = 150 s step at the second input. You can use the LTI system block anywhere you
want to insert an LTI system into a Simulink model.

See Also
LTI System

7-52

Analysis of Systems with Time Delays

Analysis of Systems with Time Delays

You can use analysis commands such as step, bode, or margin to analyze systems with
time delays. The software makes no approximations when performing such analysis.

For example, consider the following control loop, where the plant is modeled as first-order
plus dead time:

+
1 5e-3.4s
o+ = -
’ (53 o Y

You can model the closed-loop system from r to y with the following commands:

tf('s');
5*exp(-3.4%s)/(s+1);
0.1 * (1 + 1/(5%*s));
feedback(P*C,1);

0 Uown

T is a state-space model with an internal delay. For more information about models with
internal delays, see “Closing Feedback Loops with Time Delays” on page 2-45.

Plot the step response of T:
stepplot(T)

7-53

7 Time Domain Analysis

Step Response

Amplitude

E 1 1
0 50 100 150
Time (seconds)

For more complicated interconnections, you can name the input and output signals of
each block and use connect to automatically take care of the wiring. Suppose, for
example, that you want to add feedforward to the control loop of the previous model.

7-54

Analysis of Systems with Time Delays

0.3 Y
5+4

+ = i + Ao-dda
fgu— +) e ¥
01t 55) U u 5+7

oy

You can derive the corresponding closed-loop model Tff by

F =0.3/(s+4);
P.InputName = 'u‘;
P.OutputName = 'y';
C.InputName = 'e';
C.OutputName = 'uc';
F.InputName = 'r‘;
F.QutputName = 'uf';

Suml = sumblk('e','r','y',"+-');
Sum2 = sumblk('u','uf','uc', '++');
Tff = connect(P,C,F,Suml,Sum2,'r',"'y

r-y

e
u uf+uc

- 0% of

);
and compare its response with the feedback only design.

stepplot(T,Tff)
legend('No feedforward', 'Feedforward')

7-35

7 Time Domain Analysis

7-56

Step Response

From:r To:y

Mo feedforward
\ Feedforward

o
o

Amplitude

| i i
0 100 150

Time (seconds)

en

The state-space representation keeps track of the internal delays in both models.

Considerations to Keep in Mind when Analyzing Systems with
Internal Time Delays

The time and frequency responses of delay systems can look odd and suspicious to those
only familiar with delay-free LTI analysis. Time responses can behave chaotically, Bode

plots can exhibit gain oscillations, etc. These are not software or numerical quirks but
real features of such systems. Below are a few illustrations of these phenomena.

Gain ripple:

Analysis of Systems with Time Delays

Magnitude (dB)

tf('s");

exp(-5*%s)/(s+1);

feedback(G,.5);
emag(T)

o—on
(=X | I [|

(o}

Bode Diagram
10 - - - -

A0+ _

60 — ' — ' '
1072 107! 10° 10" 102 10°
Frequency (rad/s)

Gain oscillations:

G=1+ 0.5 * exp(-3*s);
bodemag (G)

7-57

7 Time Domain Analysis

7-58

Bode Diagram

Magnitude (dB)

—B M M | i i M |

10° 107
Frequency (rad's)

1072 107"

Jagged step response:

G = exp(-s) * (0.8*%s"2+s+2)/(s"2+s);
T = feedback(G,1);
stepplot(T)

Analysis of Systems with Time Delays

Step Response

o
-

Amplitude
3
o0
<
=

=
o
T

=
e
T

0.2

Y
)
f
|
|

T T T S, -

0 5 10 15
Time (seconds)

Note the rearrivals (echoes) of the initial step function.

Chaotic response:

G = 1/(s+1) + exp(-4*s);
T = feedback(1,G);
stepplot(T,150)

20 25

7-59

7 Time Domain Analysis

Step Response

1.5

é 0.5 r L-IL r ,{MLJ'L', lAL_Ll i-. "LL . +
E— I
< gt
0.5
-1 1 1
0 50 100 150

Time (seconds)

You can use Control System Toolbox tools to model and analyze these and other strange-
appearing artifacts of internal delays.

See Also

Related Examples
. “Closing Feedback Loops with Time Delays” on page 2-45

7-60

See Also

More About

. “Time Delays in Linear Systems” on page 2-40
. “Internal Delays” on page 2-73

7-61

Frequency Domain Analysis

* “Frequency-Domain Responses” on page 8-2

* “Frequency Response of a SISO System” on page 8-4

* “Frequency Response of a MIMO System” on page 8-6

* “Frequency-Domain Characteristics on Response Plots” on page 8-10

* “Numeric Values of Frequency-Domain Characteristics of SISO Model” on page 8-13
* “Pole and Zero Locations” on page 8-16

* “Assessing Gain and Phase Margins” on page 8-19

* “Analyzing Control Systems with Delays” on page 8-32

* “Analyzing the Response of an RLC Circuit” on page 8-50

8 Frequency Domain Analysis

Frequency-Domain Responses

8-2

When you perform frequency-domain analysis of a dynamic system model, you may want
one or more of the following:

* A plot of the system response as a function of frequency, or plots of pole and zero
locations.
* Numerical values of the system response in a data array.

* Numerical values of characteristics of the system response such as stability margins,
peak gains, or singular values.

Control System Toolbox frequency-domain analysis commands can obtain these results for
any kind of dynamic system model (for example, continuous or discrete, SISO or MIMO,
or arrays of models).

To obtain numerical data, use:
* bode,freqresp,nichols,nyquist — System response data at a vector of frequency

points.

* margin,getPeakGain,getGainCrossover,sigma — Numerical values of system
response characteristics such as gain margins, phase margins, and singular values.

To obtain response plots, use:
* bode,bodemag,nichols,nyquist — Plot system response data, visualize response

characteristics on plots, compare responses of multiple systems on a single plot.

* bodeplot,nicholsplot,nyquistplot,sigmaplot — Create system response plots
with more plot-customization options. For details about plot customization, see “Plot
Customization”.

* Linear System Analyzer — App for plotting many types of system responses
simultaneously, including both time-domain and frequency-domain responses
To obtain pole-zero maps, use:

* pzplot, iopzplot — Plot pole and zero locations in the complex plane.

If you have a generalized state-space (genss) model of a control system, you can extract
various transfer functions from it for analysis using frequency-domain and time-domain
analysis commands. Extract responses from such models using getIOTransfer,
getLoopTransfer, getSensitivity, and getCompSensitivity.

See Also

See Also

Related Examples

. “Frequency Response of a SISO System” on page 8-4
. “Frequency Response of a MIMO System” on page 8-6
. “Joint Time-Domain and Frequency-Domain Analysis” on page 7-40

8-3

8 Frequency Domain Analysis

Frequency Response of a SISO System

This example shows how to plot the frequency response and obtain frequency response
data for a single-input, single-output (SISO) dynamic system model.

Create a transfer function model and plot its frequency response.

H=tf([10,21]1,[1,1.4,26]1);
bode(H)

Bode Diagram

Magnitude (dB)
|

L]

Phase (deq)

[{n]
L]

=
=]

Frequency (rad/s)

When you can bode without output arguments, it plots the frequency response on the
screen. Unless you specify a frequency range to plot, bode automatically chooses a
frequency range based on the system dynamics.

8-4

See Also

Calculate the frequency response between 1 and 13 rad/s.
[mag,phase,w] = bode(H,{1,13});

When you call bode with output arguments, the command returns vectors mag and phase
containing the magnitude and phase of the frequency response. The cell array input
{1,13} tells bode to calculate the response at a grid of frequencies between 1 and 13
rad/s. bode returns the frequency points in the vector w.

See Also
bode | bodeoptions | bodeplot

Related Examples
. “Frequency Response of a MIMO System” on page 8-6

. “Numeric Values of Frequency-Domain Characteristics of SISO Model” on page 8-
13

More About

. “Frequency-Domain Responses” on page 8-2

8 Frequency Domain Analysis

Frequency Response of a MIMO System

8-6

This example shows how to examine the frequency response of a multi-input, multi-output
(MIMO) system in two ways: by computing the frequency response, and by computing the
singular values.

Calculate the frequency response of a MIMO model and examine the size of the output.

H = rss(2,2,2);
H.InputName = 'Control’;

H.OutputName = 'Temperature';
[mag,phase,w] = bode(H);
size(mag)
ans = 1Ix3

2 2 70

The first and second dimension of the data array mag are the number of outputs and
inputs of H. The third dimension is the number of points in the frequency vector w. (The
bode command determines this number automatically if you do not supply a frequency
vector.) Thus, mag(i,j,:) is the frequency response from the j th input of H to the i th
output, in absolute units. The phase data array phase takes the same form as mag.

Plot the frequency response of each input/output pair in H.

bode(H)

Frequency Response of a MIMO System

Magnitude (dB) ; Phase (deg)

To: Temn peratuil g,(;Hem

peratuie Zfem peratur

Y5 .lelem perature 1)
o

360
180

-180

From: Control(1)

Bode Diagram

From: Control(2)

o

—

40

1072

10°

102

1072

Frequency (rad/s)

bode plots the magnitude and the phase of the frequency response of each input/output
pair in H. (Because rss generates a random state-space model, you might see different
responses from those pictured.) The first column of plots shows the response from the
first input, Control(1), to each output. The second column shows the response from the
second input, Control(2), to each output.

Plot the singular values of H as a function of frequency.

sigma(H)

8 Frequency Domain Analysis

Singular Values

o)
=2
r-n -
g 2 -
G
=
|-
& 4 :
S J—
£ vy
.t —_ / |
- -.__H _..f
i
I
/
- / E
—1: - 1 Iﬂ 1 .
1072 107! 10? 10 102
Frequency (rad/s)

sigma plots the singular values of the MIMO system H as a function of frequency. The
maximum singular value at a particular frequency is the maximum gain of the system over
all linear combinations of inputs at that frequency. Singular values can provide a better
indication of the overall response, stability, and conditioning of a MIMO system than a
channel-by-channel Bode plot.

Calculate the singular values of H between 0.1 and 10 rad/s.
[sv,w] = sigma(H,{0.1,10});

When you call sigma with output arguments, the command returns the singular values in
the data array sv. The cell array input {0.1, 10} tells sigma to calculate the singular
values at a grid of frequencies between 0.1 and 10 rad/s. sigma returns these frequencies
in the vector w. Each row of sv contains the singular values of H at the frequencies of w.

8-8

See Also

See Also
bode | bodeplot | sigma | sigmaplot

Related Examples

. “Numeric Values of Frequency-Domain Characteristics of SISO Model” on page 8-
13
. “Joint Time-Domain and Frequency-Domain Analysis” on page 7-40

8-9

8 Frequency Domain Analysis

Frequency-Domain Characteristics on Response Plots

This example shows how to display system characteristics such as peak response on Bode
response plots.

You can use similar procedures to display system characteristics on other types of
response plots.

Create a transfer function model and plot its frequency response.

H=tf([10,21],[1,1.4,26]);
bodeplot(H)

Bode Diagram

—)
= =
T

1

mMagnitude (dB)
=
1

Phaze (deg)
.
h
1

Fregquency (radfs)

Display the peak response on the plot.

Right-click anywhere in the figure and select Characteristics > Peak Response from
the menu.

8-10

Frequency-Domain Characteristics on Response Plots

M agnitude (dE)

Phase (deqg)

Bode Diagram

Systems 2
isti 2
20 Characteristics Peak Response h
45 Show » Minirmum Stability Margins
" | Grid All Stability Margins
v Full View
“8r Properties ... i
90t e
-135 Lt | I L ——
107 10" 10' 10°

Frequency (rad/s)

A marker appears on the plot indicating the peak response. Horizontal and vertical dotted
lines indicate the frequency and magnitude of that response. The other menu options add
other system characteristics to the plot.

Magnitude (dB)

20

Bode Diagram

—
=
T

8-11

8 Frequency Domain Analysis

Click the marker to view the magnitude and frequency of the peak response in a datatip.

Bode Diagram
2':' I _I _______ T
! System: H

T | Peak gain (dB}: 17.7 7
=3 . At frequency (radis): 5
B | i
= .
[
o I
W
= 0f I i

20 1 | . 1

See Also

Related Examples

. “Numeric Values of Frequency-Domain Characteristics of SISO Model” on page 8-
13

. “Joint Time-Domain and Frequency-Domain Analysis” on page 7-40

. “Pole and Zero Locations” on page 8-16

8-12

Numeric Values of Frequency-Domain Characteristics of SISO Model

Numeric Values of Frequency-Domain Characteristics of
SISO Model

This example shows how to obtain numeric values of several frequency-domain
characteristics of a SISO dynamic system model, including the peak gain, dc gain, system
bandwidth, and the frequencies at which the system gain crosses a specified frequency.

Magnitude (dB)

Phase (deq)

Create a transfer function model and plot its frequency response.

H=tf([10,21],[1,1.4,26]);
bodeplot (H)

Bode Diagram

—

1071 10° 10’
Frequency (rad/s)

8-13

8 Frequency Domain Analysis

8-14

Plotting the frequency response gives a rough idea of the frequency-domain
characteristics of the system. H includes a pronounced resonant peak, and rolls off at 20
dB/decade at high frequency. It is often desirable to obtain specific numeric values for
such characteristics.

Calculate the peak gain and the frequency of the resonance.

[gpeak, fpeak] = getPeakGain(H);
gpeak dB = mag2db(gpeak)

gpeak dB = 17.7579

getPeakGain returns both the peak location fpeak and the peak gain gpeak in absolute
units. Using mag2db to convert gpeak to decibels shows that the gain peaks at almost 18
dB.

Find the band within which the system gain exceeds 0 dB, or 1 in absolute units.
wC = getGainCrossover(H,1)
wc = 2x1

1.2582
12.1843

getGainCrossover returns a vector of frequencies at which the system response
crosses the specified gain. The resulting wc vector shows that the system gain exceeds 0
dB between about 1.3 and 12.2 rad/s.

Find the dc gain of H.

The Bode response plot shows that the gain of H tends toward a finite value as the
frequency approaches zero. The dcgain command finds this value in absolute units.

k = dcgain(H);
Find the frequency at which the response of H rolls off to -10 dB relative to its dc value.
fb = bandwidth(H, -10);

bandwidth returns the first frequency at which the system response drops below the dc
gain by the specified value in dB.

See Also

See Also

bandwidth | getGainCrossover | getPeakGain

Related Examples

. “Pole and Zero Locations” on page 8-16
More About
. “Frequency-Domain Responses” on page 8-2

8-15

8 Frequency Domain Analysis

Pole and Zero Locations

8-16

This example shows how to examine the pole and zero locations of dynamic systems both
graphically using pzplot and numerically using pole and zero.

Examining the pole and zero locations can be useful for tasks such as stability analysis or
identifying near-canceling pole-zero pairs for model simplification. This example
compares two closed-loop systems that have the same plant and different controllers.

Create dynamic system models representing the two closed-loop systems.

G = zpk([],[-5 -5 -10],100);
Cl = pid(2.9,7.1);

CL1 = feedback(G*Cl1,1);

C2 = pid(29,7.1);

CL2 = feedback(G*C2,1);

The controller C2 has a much higher proportional gain. Otherwise, the two closed-loop
systems CL1 and CL2 are the same.

Graphically examine the pole and zero locations of CL1 and CL2.

pzplot(CL1,CL2)
grid

Pole and Zero Locations

Imaginary Axis {seconds'1]

Pole-Zero Map

15 . — — — ;

086 0.76- . 0.64 05034 0.16

il »

10

0.94
7 | 0.985 _ .3
v I 20 B e 1 = - CH @
. |0:985 .

0.64
10
.« losa . 076 . 064 05 034 016
.25 -20 15 0 5 0

pzplot plots pole and zero locations on the complex plane as x and 0 marks,

1
Real Axis {secnnd5'1]

n

respectively. When you provide multiple models, pzplot plots the poles and zeros of each
model in a different color. Here, there poles and zeros of CL1 are blue, and those of CL2

are

green.

The plot shows that all poles of CL1 are in the left half-plane, and therefore CL1 is stable.

From the radial grid markings on the plot, you can read that the damping of the

oscillating (complex) poles is approximately 0.45. The plot also shows that CL2 contains
poles in the right half-plane and is therefore unstable.

Compute numerical values of the pole and zero locations of CL2.

z
p

zero(CL2);
pole(CL2);

8-17

8 Frequency Domain Analysis

zero and pole return column vectors containing the zero and pole locations of the
system.

See Also
pole | pzplot | zero

Related Examples

. “Numeric Values of Frequency-Domain Characteristics of SISO Model” on page 8-13
More About
. “Frequency-Domain Responses” on page 8-2

8-18

Assessing Gain and Phase Margins

Assessing Gain and Phase Margins

This example shows how to examine the effect of stability margins on closed-loop
response characteristics of a control system.

Stability of a Feedback Loop

Stability generally means that all internal signals remain bounded. This is a standard
requirement for control systems to avoid loss of control and damage to equipment. For
linear feedback systems, stability can be assessed by looking at the poles of the closed-
loop transfer function. Consider for example the SISO feedback loop:

+ e u 0.5s+ 1.3
r—e(})—»| K . -y
s>+ 1.2s% + 1.6s
Plant

SISO Feedback Loop

Figure 1: SISO Feedback Loop.

For a unit loop gain k, you can compute the closed-loop transfer function T using:

G
T

tf([.5 1.3]1,[1 1.2 1.6 0]);
feedback(G,1);

To obtain the poles of T, type
pole(T)
ans =

-0.2305 + 1.30621

-0.2305 - 1.3062i
-0.7389 + 0.00001

The feedback loop for k=1 is stable since all poles have negative real parts.

8-19

8 Frequency Domain Analysis

How Stable is Stable?

Checking the closed-loop poles gives us a binary assessment of stability. In practice, it is
more useful to know how robust (or fragile) stability is. One indication of robustness is
how much the loop gain can change before stability is lost. You can use the root locus plot
to estimate the range of k values for which the loop is stable:

rlocus(G)
Root Locus

15 T T T T T | T

10 J
'Tm
= - | : 4
e 5 :
] :
o P
& ><_——"'TF-
| 0o o
Z —
> LTS
o
£ =L J
m =it
@
E

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1

Real Axis {secondsqj

Clicking on the point where the locus intersects the y axis reveals that this feedback loop
is stable for

0<k <27

8-20

Assessing Gain and Phase Margins

This range shows that with k=1, the loop gain can increase 270% before you lose stability.
Gain and Phase Margins

Changes in the loop gain are only one aspect of robust stability. In general, imperfect

plant modeling means that both gain and phase are not known exactly. Because modeling
errors are most damaging near the gain crossover frequency (frequency where open-loop
gain is 0dB), it also matters how much phase variation can be tolerated at this frequency.

The phase margin measures how much phase variation is needed at the gain crossover
frequency to lose stability. Similarly, the gain margin measures what relative gain
variation is needed at the gain crossover frequency to lose stability. Together, these two
numbers give an estimate of the "safety margin" for closed-loop stability. The smaller the
stability margins, the more fragile stability is.

You can display the gain and phase margins on a Bode plot as follows. First create the
plot:

bode(G), grid

8-21

8 Frequency Domain Analysis

Bode Diagram

— E i \-\._\H“& |
g ~
2 20f ' .
il \"‘-—u_
3 407 S .
= T
& 60 By 1
= T

a0t T~

-100 : :

G0 —— . .

———
""H-;__\

g 135
b]
o
£ 180 | e
o ~— I

225 ' :

10" 10° 10" 102

Frequency (rad/s)

Then, right-click on the plot and select the Characteristics -> Minimum Stability
Margins submenu. Finally, click on the blue dot markers. The resulting plot is shown
below:

8-22

Assessing Gain and Phase Margins

Magnitude {dB)

Fhase (deq)

Bode Diagram

20T System: G T
Gain Margin (dB): 8.77

At frequency (rad/s): 1.72
-0 | Closed loop stable? Yes -

B0 System: G T~
100 i . v+ ... PhaseMargin (deg): 44.7 i i i iiiii
) — ——————— Delay Margin (sec): 0.752 — — T

_—H“H At frequency (rad/s): 1.04
Closed loop stable? Yes

-135

10! 107 o’ o

Frequency (rad/s)

This indicates a gain margin of about 9 dB and a phase margin of about 45 degrees. The
corresponding closed-loop step response exhibits about 20% overshoot and some
oscillations.

step(T), title('Closed-loop response for k=1')

8-23

8 Frequency Domain Analysis

Closed-loop response for k=1

1.4 T T T T

Amplitude

10 15 20
Time (seconds)

If we increase the gain to k=2, the stability margins are reduced to

[Gm,Pm] = margin(2*G);
GmdB = 20*10g10(Gm) % gain margin in dB
Pm % phase margin in degrees

GmdB =

2.7471

Pm =

8-24

Assessing Gain and Phase Margins

8.6328

and the closed-loop response has poorly damped oscillations, a sign of near instability.

step(feedback(2*G,1)), title('Closed-loop response for k=2')

Closed-loop response for k=2
1 E E T T T T T T T

Amplitude

|1
06 || |

0 : : :
0 10 20 30 40 a0 60 70 80

Time (seconds)

Systems with Multiple Gain or Phase Crossings

Some systems have multiple gain crossover or phase crossover frequencies, which leads
to multiple gain or phase margin values. For example, consider the feedback loop

8-25

8 Frequency Domain Analysis

+ e u 20 (s® + 3.2s + 7.2) (s - 8s + 400)
(s+7) (s*- 1.2s + 0.8) (s® + 33s + 700)

Plant

SISO Feedback Loop

Figure 2: Feedback Loop with Multiple Phase Crossovers

The closed-loop response for k=1 is stable:

G tf(20,[1 7]) * tf([1 3.2 7.2],[1 -1.2 0.8]) * tf([1 -8 400],[1 33 700]);
T feedback(G,1);
step(T), title('Closed-loop response for k=1')

8-26

Assessing Gain and Phase Margins

Closed-loop response for k=1

1.4

1.2

Los
=
£
.,_% 0.6
0.4
0.2
D 1 1 1 1 1 1
0 1 2 3 4 5 6
Time (seconds)

To assess how robustly stable this loop is, plot its Bode response:

bode(G), grid

8-27

8 Frequency Domain Analysis

Bode Diagram

Magnitude (dB)

_"h.__\-‘ll T

40 :

270 T

FPhase (deq)

/ T

\

Then, right-click on the plot and select the Characteristics -> All Stability Margins
submenu to show all the crossover frequencies and associated stability margins. The

. Ik

10°
Frequency (rad/s)

resulting plot is shown below.

8-28

Assessing Gain and Phase Margins

Magnitude {dB)

Fhase (deq)

Bode Diagram

r
A0 T T T TTTTT T T T T T T TTTT T T T T T

a0 F R System: G
\‘ Gain Margin (dB): 10.6

. At frequency (rad/s): 16.5

0 —|Syslem: G = C:Ios?:l In:m:::’]#,l;ttzlr:rle"rE Yes
Gain Margin (dB): -9.35 \L/ . '
L At frequency (rad/s): 1.94 H"“‘-Hﬁ |
= Closed loop stable? Yes L
]

_____ -_-"\, A SR Y IR I I S

0 \H&

o= 0! 10" 107 iy 107

Frequency (rad/s)

Note that there are two 180 deg phase crossings with corresponding gain margins of
-9.35dB and +10.6dB. Negative gain margins indicate that stability is lost by decreasing
the gain, while positive gain margins indicate that stability is lost by increasing the gain.
This is confirmed by plotting the closed-loop step response for a plus/minus 6dB gain
variation about k=1:

kl = 2; Tl = feedback(G*kl1l,1);
k2 = 1/2; T2 = feedback(G*k2,1);
step(T,'b"',T1,'r',72,'9g"',12),

legend('k = 1','k =2','k = 0.5")

8-29

8 Frequency Domain Analysis

1.5 . :
k=1
k=2
k=05
.]
\ L -
o \/ Mg .
= S
= -
=
E
<
0.5 1
I: 1 1 1 1 1
0 2 4 6 8 10 12

Time (seconds)

The plot shows increased oscillations for both smaller and larger gain values.

You can use the command allmargin to compute all stability margins. Note that gain
margins are expressed as gain ratios, not dB. Use mag2db to convert the values to dB.

m = allmargin(G)

GainMargins dB = mag2db(m.GainMargin)

m =

struct with fields:

8-30

See Also

GainMargin:
GMFrequency:
PhaseMargin:
PMFrequency:
DelayMargin:
DMFrequency:

Stable:

GainMargins dB =

[0.3408 3.3920]
[1.9421 16.4807]
68.1178

7.0762

0.1680

7.0762

1

-9.3510 10.6091

See Also

margin | pole

Related Examples

. “Pole and Zero Locations” on page 8-16

8-31

8 Frequency Domain Analysis

Analyzing Control Systems with Delays

8-32

This example shows how to use Control System Toolbox™ to analyze and design control
systems with delays.

Control of Processes with Delays

Many processes involve dead times, also referred to as transport delays or time lags.
Controlling such processes is challenging because delays cause linear phase shifts that
limit the control bandwidth and affect closed-loop stability.

Using the state-space representation, you can create accurate open- or closed-loop
models of control systems with delays and analyze their stability and performance without
approximation. The state-space (SS) object automatically keeps track of "internal" delays
when combining models, see the "Specifying Time Delays" tutorial for more details.

Example: Pl Control Loop with Dead Time

Consider the standard setpoint tracking loop:

Ysp * . E o u 2 ¥

where the process model P has a 2.6 second dead time and the compensator C is a PI
controller:

P '}.E‘r.-l:._i I ..1}

) = 2035 71

C(s) = 0.06(1 4 £}
i

You can specify these two transfer functions as

tf('s');
exp(-2.6*s)*(s+3)/(s"2+0.3*s+1);

S
P
C=0.06* (1L + 1/s);

To analyze the closed-loop response, construct a model T of the closed-loop transfer from
ysp to y. Because there is a delay in this feedback loop, you must convert P and C to state
space and use the state-space representation for analysis:

Analyzing Control Systems with Delays

T = feedback(P*C,1)
T =
A =
x1 x2 x3
x1 -0.36 -1.24 -0.18
x2 1 0 0
x3 0 1 0
B =
ul
x1 0.5
x2 0
x3 0
C =
x1 x2 X3
yl 0.12 0.48 0.36
D =
ul
yl 0

(values computed with all internal delays set to zero)

Internal delays (seconds): 2.6
Continuous-time state-space model.
The result is a third-order model with an internal delay of 2.6 seconds. Internally, the
state-space object T tracks how the delay is coupled with the remaining dynamics. This

structural information is not visible to users, and the display above only gives the A,B,C,D
values when the delay is set to zero.

Use the STEP command to plot the closed-loop step response from ysp to y:

step(T)

8-33

8 Frequency Domain Analysis

Step Response
1.2 ; .
N ..
F e\ Ao
| |
!
| /
0.8 || ”-'
o | \
E |
=
S 06 |
£ !
<
!
I
0.2 | I|
I
|
|
D |I 1 1 1 1 1 1
0 10 20 30 40 50 60 70

Time (seconds)

The closed-loop oscillations are due to a weak gain margin as seen from the open-loop
response P*C:

margin(P*C)

8-34

Analyzing Control Systems with Delays

Phase (deq)

Bode Diagram
Gm=3.9dB (at 0.759 rad/s}), Pm =72.7 deg (at 0.19 rad/s)

Magnitude (dB)
s o I
= = = [=

o
o

]

-5760 |

-11520

-17280 : -
1072 107! 10? 10 102
Frequency (rad/s)
There is also a resonance in the closed-loop frequency response:

bode(T)
grid, title('Closed-loop frequency response')

8-35

8 Frequency Domain Analysis

Closed-I

oop frequency response

Magnitude (dB)

S\ -

"

—_—

-360 |

20T

-1080

Phase (deq)

-1440

1800
1072

107!

10°
Frequency (rad/s)

To improve the design, you can try to notch out the resonance near 1 rad/s:

notch
cC=0.

= tf
05 *
Tnotch = f

step(Tnotch), grid

8-36

([1 6.2 11,[1 .8 11);
(1 + 1/s);
eedback(P*C*notch,1);

Analyzing Control Systems with Delays

Amplitude

Step Response

T - — i t

n
T

l l
30 35 40

l
L 5 10 15 20 25

Time (seconds)

Pade Approximation of Time Delays

Many control design algorithms cannot handle time delays directly. A common
workaround consists of replacing delays by their Pade approximations (all-pass filters).
Because this approximation is only valid at low frequencies, it is important to compare the
true and approximate responses to choose the right approximation order and check the

approximation validity.

Use the PADE command to compute Pade approximations of LTI models with delays. For
the PI control example above, you can compare the exact closed-loop response T with the

response obtained for a first-order Pade approximation of the delay:

8-37

8 Frequency Domain Analysis

Tl = pade(T,1);
step(T,'b',T1,'r',100)
grid, legend('Exact','First-Order Pade')

Step Response

Exact
First-COrder Pade
" T =

Amplitude

0 10 20 30 40 50 60 70 80 90 100
Time (seconds)

The approximation error is fairly large. To get a better approximation, try a second-order
Pade approximation of the delay:

T2 = pade(T,2);

step(T,'b',T2,'r',100)
grid, legend('Exact', 'Second-Order Pade')

8-38

Analyzing Control Systems with Delays

Amplitude

Step Response

Exact
Second-Order Pade

0.2 ' '
0 10 20 30 40 50 60 70 80 00 100
Time (seconds)

The responses now match closely except for the non-minimum phase artifact introduced
by the Pade approximation.

Sensitivity Analysis

Delays are rarely known accurately, so it is often important to understand how sensitive a
control system is to the delay value. Such sensitivity analysis is easily performed using
LTT arrays and the InternalDelay property.

For example, to analyze the sensitivity of the notched PI control above, create 5 models
with delay values ranging from 2.0 to 3.0:

delay values
copies of Tnotch

tau = linspace(2,3,5);

% 5
Tsens = repsys(Tnotch,[1 1 5]); % 5

8-39

8 Frequency Domain Analysis

8-40

Amplitude

for j=1:5
Tsens(:,:,j).InternalDelay = tau(j); % jth delay value -> jth model
end

Then use STEP to create an envelope plot:

step(Tsens)
grid, title('Closed-loop response for 5 delay values between 2.0 and 3.0')

Closed-loop response for 5 delay values between 2.0 and 3.0

1.2

0.8

0.4

0.2

0 5 10 15 20 25 30 35 40
Time (seconds)

This plot shows that uncertainty on the delay value has little effect on closed-loop
characteristics. Note that while you can change the values of internal delays, you cannot
change how many there are because this is part of the model structure. To eliminate some
internal delays, set their value to zero or use PADE with order zero:

Analyzing Control Systems with Delays

Magnitude (dB)

Tnotch® = Tnotch;

Tnotch@.InternalDelay = 0;

bode(Tnotch, 'b',Tnotcho, 'r',{le-2,3})

grid, legend('Delay = 2.6','No delay', 'Location', 'SouthWest")

Bode Diagram

-540 Delay = 2.6
Mo delay
-720 :
10°2 107! 10°
Frequency (rad/s)

Discretization

You can use C2D to discretize continuous-time delay systems. Available methods include
zero-order hold (ZOH), first-order hold (FOH), and Tustin. For models with internal
delays, the ZOH discretization is not always "exact," i.e., the continuous and discretized
step responses may not match:

8-41

8 Frequency Domain Analysis

Td = c2d(T,1);
step(T,'b',Td, 'r")
grid, legend('Continuous','ZOH Discretization')

Warning: Discretization is only approximate due to internal delays. Use faster
sampling rate if discretization error is large.

Step Response

Continuous
Z0OH Discretization

=
s

Amplitude
[
o

=
B
T

0.2

0 10 20 30 40 50 60 70
Time (seconds)

To correct such discretization gaps, reduce the sampling period until the continuous and
discrete responses match closely:

Td = c2d(T,0.05);

step(T,'b",Td, 'r")
grid, legend('Continuous','ZOH Discretization')

8-42

Analyzing Control Systems with Delays

Warning: Discretization is only approximate due to internal delays. Use faster
sampling rate if discretization error is large.

Step Response

1.2 T T

Continuous
Z0OH Discretization

=
ws]
T

Amplitude
[
=]

=
=9
T

0.2

0 10 20 30 40 50 60 70
Time (seconds)

Note that internal delays remain internal in the discretized model and do not inflate the
model order:

order(Td)
Td.InternalDelay

ans =

8-43

8 Frequency Domain Analysis

ans =

52

Some Unique Features of Delay Systems

The time and frequency responses of delay systems can look bizarre and suspicious to
those only familiar with delay-free LTI analysis. Time responses can behave chaotically,
Bode plots can exhibit gain oscillations, etc. These are not software quirks but real
features of such systems. Below are a few illustrations of these phenomena

Gain ripples:

G = exp(-5*%s)/(s+1);
T feedback(G, .5);
bodemag(T)

8-44

Analyzing Control Systems with Delays

Magnitude (dB)

10

-40

60

1072 107" 10° 107 102

Bode Diagram

Frequency (rad/s)

Gain oscillations:

G =

1+ 0.5 * exp(-3*s);

bodemag(G)

8-45

8 Frequency Domain Analysis

Magnitude (dB)

8-46

Bode Diagram

=

ra

L

_ﬂ, . i
1072 107! 10° 107 102
Frequency (rad/s)

Jagged step response (note the "echoes" of the initial step):

G = exp(-s) * (0.8*%s"2+s+2)/(s"2+s);
T = feedback(G,1);
step(T)

Analyzing Control Systems with Delays

Step Response

1.8
16T

14F |

o

Amplitude
2
w1} =i
i
I'd
o

=
o
T

=
.
T

0271

0 5 10 15
Time (seconds)

Chaotic response:

G = 1/(s+1) + exp(-4*s);
T = feedback(1l,G);
step(T)

20

25

8-47

8 Frequency Domain Analysis

Step Response
1.4 ; .
12|
1
Jub}
=
=
£
E
<
0.4
—DE 1 1 1 1 1 1
0 1000 2000 3000 4000 5000 6000 7000
Time (seconds)
See Also

margin | pade

Related Examples
. “Analyzing the Response of an RLC Circuit” on page 8-50

More About

. “Time Delays in Linear Systems” on page 2-40

8-48

See Also

“Time-Delay Approximation” on page 2-48

8-49

8 Frequency Domain Analysis

Analyzing the Response of an RLC Circuit

This example shows how to analyze the time and frequency responses of common RLC
circuits as a function of their physical parameters using Control System Toolbox™
functions.

Bandpass RLC Network

The following figure shows the parallel form of a bandpass RLC circuit:

Vin Vout
L)
R
P e
L C
o 1)

Figure 1: Bandpass RLC Network.

The transfer function from input to output voltage is:

8-50

Analyzing the Response of an RLC Circuit

\I R{ﬁ]
s2 +s/(RC) + 1/(LC)

Gs)

The product LC controls the bandpass frequency while RC controls how narrow the
passing band is. To build a bandpass filter tuned to the frequency 1 rad/s, set L=C=1 and
use R to tune the filter band.

Analyzing the Frequency Response of the Circuit

The Bode plot is a convenient tool for investigating the bandpass characteristics of the
RLC network. Use tf to specify the circuit's transfer function for the values

%|R=L=C=1|
R=1;,L=1; C=1;
G = tf([1/(R*C) 0],[1 1/(R*C) 1/(L*C)])

(0]
]

Continuous-time transfer function.

Next, use bode to plot the frequency response of the circuit:

bode(G), grid

8-51

8 Frequency Domain Analysis

Bode Diagram

- Ny
HK__
10 / S .

90 L L I -
102 107! 10° 10 102
Frequency (rad/s)

As expected, the RLC filter has maximum gain at the frequency 1 rad/s. However, the
attenuation is only -10dB half a decade away from this frequency. To get a narrower
passing band, try increasing values of R as follows:

RL =5; Gl = tf([1/(R1*C) 01,[1 1/(R1*C) 1/(L*C)]);
R2 = 20; G2 = tf([1/(R2*C) 0],[1 1/(R2*C) 1/(L*C)]);
bode(G, 'b',61, 'r',G2,'g"), grid
legend('R = 1','R = 5','R = 20")

8-52

Analyzing the Response of an RLC Circuit

Magnitude (dB)

Phase (deq)

Bode Diagram

R =
R=5& |
R=20

102 107! 10° 10 102
Frequency (rad/s)

The resistor value R=20 gives a filter narrowly tuned around the target frequency of 1
rad/s.

Analyzing the Time Response of the Circuit

We can confirm the attenuation properties of the circuit G2 (R=20) by simulating how this
filter transforms sine waves with frequency 0.9, 1, and 1.1 rad/s:

t =0:0.05:250;

opt = timeoptions;

opt.Title.FontWeight = 'Bold’;

subplot(311), lsim(G2,sin(t),t,opt), title('w =1

subplot(312), lsim(G2,sin(0.9*t),t,opt), title('w
('w

")
subplot(313), lsim(G2,sin(1l.1*t),t,opt), title =

8-53

8 Frequency Domain Analysis

w=1
1 ITN K T T T
|||rI I
g |
Eu
I | |I|
1 |.|LJ|.. bl i
0 50 100 150 200 250
Time (seconds)
w=09
111|'| 11'|r- 1'||'
I I IR] || N
g ||||||||||I||||||||||I||I|||||I||' ||||||'|'|I||I ||||I||
§“||”|I'“|I'H|l'|”| II|"|I hATA(IIII
|
< LUV TV LAY UV TUNY ll”l l" LU l“ LU U
0 50 100 1511 200 2511
Time (seconds)
w=1.1
1
T T T AT ETT -| EEREEEEE '||'1 T
g '|I"|'|'I|'|"||1II'|'fll' ||1|||'I'|'|"||||"||"|"|'|'||
=) |
[=%
2 |l Wdddaddaddttdadtodtottddddi i i
=S | IR NIRRT
y l'”:l'llﬂ IJllllllllllllJllllll l.llllllllil'll |Jl'|.lll".|11|
u 50 100 150 zu-u 250
Time (seconds)

The waves at 0.9 and 1.1 rad/s are considerably attenuated. The wave at 1 rad/s comes
out unchanged once the transients have died off. The long transient results from the
poorly damped poles of the filters, which unfortunately are required for a narrow passing

band:
damp(pole(G2))
Pole Damping Frequency Time Constant
(rad/TimeUnit) (TimeUnit)
-2.50e-02 + 1.00e+00i 2.50e-02 1.00e+00 4.00e+01
-2.50e-02 - 1.00e+001 2.50e-02 1.00e+00 4.00e+01

8-54

Analyzing the Response of an RLC Circuit

Interactive GUI

To analyze other standard circuit configurations such as low-pass and high-pass RLC
networks, click on the link below to launch an interactive GUI. In this GUI, you can
change the R,L,C parameters and see the effect on the time and frequency responses in
real time.

Open the RLC Circuit GUI

ric gui

8-55

matlab:rlc_gui

8 Frequency Domain Analysis

E RLC Circuit Analysis E@
File Edit WView Insert Tools Deskiop Window Help
NEEde 3|08 kE
Bode Diagram Pole-Zero Map
o 2
A _ :
=2 5 E
= .
& 3 X
ol — .
=0 Dby T
- 0 < %
g & 5
= 2 1 5
i
T 80 B .
102 10! 10° 10! 2 L L =
Frequency (rad/s) Real Axis {seconds™'}
Step Response MNyquist Diagram
15 -
g
g ’\f“* E,
- 2
g =
< 05 E
[} 2
0 50 100 -1 0.5 0 05 1
Time (seconds) Real Axis
See Also

bodeplot | lsim | stepplot

Related Examples

. “Joint Time-Domain and Frequency-Domain Analysis” on page 7-40

8-56

Sensitivity Analysis

* “Model Array with Single Parameter Variation” on page 9-2

* “Model Array with Variations in Two Parameters” on page 9-6

* “Study Parameter Variation by Sampling Tunable Model” on page 9-9
* “Sensitivity of Control System to Time Delays” on page 9-12

9 Sensitivity Analysis

Model Array with Single Parameter Variation

9-2

This example shows how to create a one-dimensional array of transfer functions using the
stack command. One parameter of the transfer function varies from model to model in
the array. You can use such an array to investigate the effect of parameter variation on
your model, such as for sensitivity analysis.

Create an array of transfer functions representing the following low-pass filter at three
values of the roll-off frequency, a.

Create transfer function models representing the filter with roll-off frequency at a = 3, 5,
and 7.

F2 = tf(5,[1 5]);
F3 = tf(7,[1 71);

Use the stack command to build an array.
Farray = stack(1,F1,F2,F3);

The first argument to stack specifies the array dimension along which stack builds an
array. The remaining arguments specify the models to arrange along that dimension.
Thus, Farray is a 3-by-1 array of transfer functions.

Concatenating models with MATLAB® array concatenation commands, instead of with
stack, creates multi-input, multi-output (MIMO) models rather than model arrays. For
example:

G = [F1;F2;F3];
creates a one-input, three-output transfer function model, not a 3-by-1 array.

When working with a model array that represents parameter variations, You can associate
the corresponding parameter value with each entry in the array. Set the SamplingGrid
property to a data structure that contains the name of the parameter and the sampled
parameter values corresponding with each model in the array. This assignment helps you
keep track of which model corresponds to which parameter value.

Model Array with Single Parameter Variation

Farray.SamplingGrid = struct('alpha',[3 5 71);
Farray

Farray(:,:,1,1) [alpha=3]

Farray(:,:,2,1) [alpha=5]

Farray(:,:,3,1) [alpha=7]

3x1 array of continuous-time transfer functions.

The parameter values in Farray.SamplingGrid are displayed along with the each transfer
function in the array.

Plot the frequency response of the array to examine the effect of parameter variation on
the filter behavior.

bodeplot(Farray)

9-3

9 Sensitivity Analysis

Bode Diagram
0 —_— . .
S
SN
o H'”‘{:‘HQEH l
=] HH -, "*..,H
— I T _
Q-
g 20 H\N\\::\N
" e
T 30 O .
N S, ‘-\.\‘x‘x
] . o
e i N
= L e
50 . . .

0 = : :
. S T
N
[aF]
=2
@ 45 f 1
(73]
o
o

NI
'EH:: i i -________-__il'—
0l ¥ q
107" ik 10 102 10°

Frequency (rad/s)

When you use analysis commands such as bodeplot on a model array, the resulting plot
shows the response of each model in the array. Therefore, you can see the range of
responses that results from the parameter variation.

See Also

stack

More About
. “Model Arrays” on page 2-101

9-4

See Also

“Select Models from Array” on page 2-105

9 Sensitivity Analysis

Model Array with Variations in Two Parameters

9-6

This example shows how to create a two-dimensional (2-D) array of transfer functions
using for loops. One parameter of the transfer function varies in each dimension of the
array.

You can use the technique of this example to create higher-dimensional arrays with
variations of more parameters. Such arrays are useful for studying the effects of multiple-
parameter variations on system response.

The second-order single-input, single-output (SISO) transfer function

w2
H(S) = 2, a7, 2"
$°+2(ws + w

depends on two parameters: the damping ratio, , and the natural frequency, w. If both ¢
and w vary, you obtain multiple transfer functions of the form:
2
= Wj
s+ 2Ciwjs + wjz

Hij(s)

where (; and w; represent different measurements or sampled values of the variable

parameters. You can collect all of these transfer functions in a single variable to create a
two-dimensional model array.

Preallocate memory for the model array. Preallocating memory is an optional step that
can enhance computation efficiency. To preallocate, create a model array of the required
size and initialize its entries to zero.

H = tf(zeros(1,1,3,3));

In this example, there are three values for each parameter in the transfer function H.
Therefore, this command creates a 3-by-3 array of single-input, single-output (SISO) zero
transfer functions.

Create arrays containing the parameter values.

eta = [0.66,0.71,0.75];
= [1.0,1.2,1.5];

= N

Build the array by looping through all combinations of parameter values.

Model Array with Variations in Two Parameters

for i = 1:length(zeta)
for j = 1l:length(w)
H(:p:,1,3) = tF(w(j)"2,[1 2*zeta(i)*w(j) w(j)"2]);
end
end

H is a 3-by-3 array of transfer functions. ¢ varies as you move from model to model along
a single column of H. The parameter w varies as you move along a single row.

Plot the step response of H to see how the parameter variation affects the step response.

stepplot(H)

Step Response
1 E 2 T T T T T T T T

=
o

Amplitude

=
i

0.2

0 1 2 3 4 5] []
Time (seconds)

=}

9 Sensitivity Analysis

9-8

You can set the SamplingGrid property of the model array to help keep track of which
set of parameter values corresponds to which entry in the array. To do so, create a grid of
parameter values that matches the dimensions of the array. Then, assign these values to
H.SamplingGrid with the parameter names.

[zetagrid,wgrid] = ndgrid(zeta,w);
H.SamplingGrid = struct('zeta',zetagrid, 'w',wgrid);

When you display H, the parameter values in H.SamplingGrid are displayed along with
the each transfer function in the array.

See Also
ndgrid

More About

. “Model Arrays” on page 2-101
. “Study Parameter Variation by Sampling Tunable Model” on page 9-9

Study Parameter Variation by Sampling Tunable Model

Study Parameter Variation by Sampling Tunable Model

This example shows how to sample a parametric model of a second-order filter across a
grid of parameter values using sampleBlock.

Consider the second-order filter represented by:

i

24 2Tws + w?

F(s)

Sample this filter at varying values of the damping constant ¢ and the natural frequency
wp. Create a parametric model of the filter by using tunable elements for ¢ and w;,.

wn = realp('wn',3);
zeta = realp('zeta',0.8);
F = tf(wn™2,[1 2*zeta*wn wn"2])

F =

Generalized continuous-time state-space model with 1 outputs, 1 inputs, 2 states, an
wn: Scalar parameter, 5 occurrences.
zeta: Scalar parameter, 1 occurrences.

Type "ss(F)" to see the current value, "get(F)" to see all properties, and "F.Blocks" -

F is a genss model with two tunable Control Design Blocks, the realp blocks wn and
zeta. The blocks wn and zeta have initial values of 3 and 0.8, respectively.

Sample F over a 2-by-3 grid of (wn, zeta) values.

wnvals = [3;5];
zetavals = [0.6 0.8 1.0];
Fsample = sampleBlock(F, 'wn',wnvals, 'zeta',zetavals);

Here, sampleBlock samples the model independently over the two w,, values and three ¢
values. Thus, Fsample is a 2-by-3 array of state-space models. Each entry in the array is a
state-space model that represents F evaluated at the corresponding (wn, zeta) pair. For
example, Fsample(:,:,2,3) haswn =5 and zeta = 1.0.

Set the SamplingGrid property of the model array to help keep track of which set of
parameter values corresponds to which entry in the array. To do so, create a grid of
parameter values that matches the dimensions of the array. Then, assign these values to
Fsample.SamplingGrid in a structure with the parameter names.

9-9

9 Sensitivity Analysis

[wngrid, zetagrid] = ndgrid(wnvals,zetavals);
Fsample.SamplingGrid = struct('wn',wngrid, 'zeta',zetagrid);

The ndgrid command produces the full 2-by-3 grid of (wn, zeta) combinations. When
you display Fsample in the command window, the parameter values in
Fsample.SamplingGrid are displayed along with the each transfer function in the
array. The parameter information is also available in response plots. For instance,
examine the step response of Fsample.

stepplot(Fsample)

[mp] [wu]

Amplitude

=
o

0.2

0 0.5 1 1.5 2 2
Time (seconds)

£n
a3
L
£n

The step response plots show the variation in the natural frequency and damping
constant across the six models in the array. When you click on one of the responses in the

9-10

See Also

plot, the datatip includes the corresponding wn and zeta values as specified in
Fsample.SamplingGrid.

See Also
sampleBlock

More About
. “Models with Tunable Coefficients” on page 1-19

9-11

9 Sensitivity Analysis

Sensitivity of Control System to Time Delays

9-12

This example shows how to examine the sensitivity of a closed-loop control system to time
delays within the system.

Time delays are rarely known accurately, so it is often important to understand how
sensitive a control system is to the delay value. Such sensitivity analysis is easily
performed using LTI arrays and the InternalDelay property. For example, consider the
notched PI control system developed in "PI Control Loop with Dead Time" from the
example "Analyzing Control Systems with Delays." The following commands create an LTI
model of that closed-loop system, a third-order plant with an input delay, a PI controller
and a notch filter.

tf('s');
exp(-2.6*s)*(s+3)/(s"2+0.3*s+1);
0.06 * (1 + 1/s);
feedback(ss(G*C),1);

ch = tf([1 0.2 11,[1 .8 1]);
=0.05 * (1 + 1/s);

Tnotch = feedback(ss(G*C*notch),1);

(o]

I | | B I

s
G
C
T
n
C

Examine the internal delay of the closed-loop system Tnotch.
Tnotch.InternalDelay

ans = 2.6000

The 2.6-second input delay of the plant G becomes an internal delay of 2.6 s in the closed-
loop system. To examine the sensitivity of the responses of Tnotch to variations in this
delay, create an array of copies of Tnotch. Then, vary the internal delay across the array.
Tsens = repsys(Tnotch,[1 1 5]);
tau = linspace(2,3,5);
for j = 1:5;

Tsens(:,:,j).InternalDelay = tau(j);
end

The array Tsens contains five models with internal delays that range from 2.0 to 3.0.

Examine the step responses of these models.

stepplot(Tsens)

See Also

Step Response

1.2

=
w
T

Amplitude
©
o

=
=
T

0.2

30 35 40

0 5 10 15 20 25
Time (seconds)

The plot shows that uncertainty on the delay value has a small effect on closed-loop

characteristics.

See Also

More About

. “Time Delays in Linear Systems” on page 2-40

9-13

Passivity and Conic Sectors

* “About Passivity and Passivity Indices” on page 10-2

* “About Sector Bounds and Sector Indices” on page 10-8

* “Passivity Indices” on page 10-18

* “Parallel Interconnection of Passive Systems” on page 10-23

» “Series Interconnection of Passive Systems” on page 10-26

* “Feedback Interconnection of Passive Systems” on page 10-30

10 Passivity and Conic Sectors

About Passivity and Passivity Indices

10-2

Passive control is often part of the safety requirements in applications such as process
control, tele-operation, human-machine interfaces, and system networks. A system is
passive if it cannot produce energy on its own, and can only dissipate the energy that is
stored in it initially. More generally, an I/O map is passive if, on average, increasing the
output y requires increasing the input u.

For example, a PID controller is passive because the control signal (the output) moves in
the same direction as the error signal (the input). But a PID controller with delay is not
passive, because the control signal can move in the opposite direction from the error, a
potential cause of instability.

Most physical systems are passive. The Passivity Theorem holds that the negative-
feedback interconnection of two strictly passive systems is passive and stable. As a result,
it can be desirable to enforce passivity of the controller for a passive system, or to
passivate the operator of a passive system, such as the driver of a car.

In practice, passivity can easily be destroyed by the phase lags introduced by sensors,
actuators, and communication delays. These problems have led to extension of the
Passivity Theorem that consider excesses or shortages of passivity, frequency-dependent
measures of passivity, and a mix of passivity and small-gain properties.

Passive Systems

A linear system G(s) is passive if all input/output trajectories y(t) = Gu(t) satisfy:
T
[Ty ouwde >0, vr>o,

where y(t) denotes the transpose of y(t). For physical systems, the integral typically
represents the energy going into the system,. Thus passive systems are systems that only
consume or dissipate energy. As a result, passive systems are intrinsically stable.

In the frequency domain, passivity is equivalent to the "positive real" condition:

G(jw) + GM(jw) >0, VYweR.

For SISO systems, this is saying that Re(G(jw)) > 0 at all frequencies, so the entire
Nyquist plot lies in the right-half plane.

nyquist(tf([1 3 5],[5 6 1]))

About Passivity and Passivity Indices

Imaginary Axis

Cad

-
S
A '
i f Y, |
1 |
1
ol N e
o) |
- |
| /
'1 N él'.l. JIII.-'I -
-\ /
2 F \M e]
— e —
_3 1 i i i i i
-1 0 1 2 3 4 5 G
Real Axis

Nyquist plot of passive system
Passive systems have the following important properties for control purposes:

* The inverse of a passive system is passive.

» The parallel interconnection of passive systems is passive (see “Parallel
Interconnection of Passive Systems” on page 10-23).

* The feedback interconnection of passive systems is passive (see “Feedback
Interconnection of Passive Systems” on page 10-30).

When controlling a passive system with unknown or variable characteristics, it is
therefore desirable to use a passive feedback law to guarantee closed-loop stability. This
task can be rendered difficult given that delays and significant phase lag destroy passivity.

10-3

10 Passivity and Conic Sectors

10-4

Directional Passivity Indices

For stability, knowing whether a system is passive or not does not tell the full story. It is
often desirable to know by how much it is passive or fails to be passive. In addition, a
shortage of passivity in the plant can be compensated by an excess of passivity in the
controller, and vice versa. It is therefore important to measure the excess or shortage of
passivity, and this is where passivity indices come into play.

There are different types of indices with different applications. One class of indices
measure the excess or shortage of passivity in a particular direction of the input/output
space. For example, the input passivity index is defined as the largest v such that:

£ T T Ou®dt > v £ T Bum)dt,

for all trajectories y(t) = Gu(t) and T > 0. The system G is input strictly passive (ISP)
when v > 0, and has a shortage of passivity when v < 0. The input passivity index is also
called the input feedforward passivity (IFP) index because it corresponds to the minimum
static feedforward action needed to make the system passive.

In the frequency domain, the input passivity index is characterized by:
1 . . .
D= jmjnAmm(G(Jw) + GH(Jw)),

where Anin denotes the smallest eigenvalue. In the SISO case, v is the abscissa of the
leftmost point on the Nyquist curve.

Similarly, the output passivity index is defined as the largest p such that:

[orwumar > o[oy

About Passivity and Passivity Indices

for all trajectories y(t) = Gu(t) and T > 0. The system G is output strictly passive (OSP)
when p > 0, and has a shortage of passivity when p < 0. The output passivity index is also
called the output feedback passivity (OFP) index because it corresponds to the minimum
static feedback action needed to make the system passive.

r + L Y _]ﬂ:"

- G -

I -—
P G

In the frequency domain, the output passivity index of a minimum-phase system G(s) is
given by:

—_

p= 7rmixmm(c;‘l(jw) + G™H(jw)).
w

In the SISO case, p is the abscissa of the leftmost point on the Nyquist curve of G_l(s).

Combining these two notions leads to the I/O passivity index, which is the largest T such
that:

_L' T T ubdt > © £ T u + Y (Dy(®)dt.

A system with T > 0 is very strictly passive. More generally, we can define the index in the
direction 6Q as the largest 7 such that:

T T(y(t)\T (y(t))
_L' YOubdt > T £ (u o) 0%t

The input, output, and I/O passivity indices all correspond to special choices of 6Q and are
collectively referred to as directional passivity indices. You can use getPassiveIndex to
compute any of these indices for linear systems in either parametric or FRD form. You can
also use passiveplot to plot the input, output, or I/O passivity indices as a function of
frequency. This plot provides insight into which frequency bands have weaker or stronger
passivity.

10-5

10 Passivity and Conic Sectors

10-6

There are many results quantifying how the input and output passivity indices propagate
through parallel, series, or feedback interconnections. There are also results quantifying
the excess of input or output passivity needed to compensate a given shortage of passivity
in a feedback loop. For details, see:

» “Parallel Interconnection of Passive Systems” on page 10-23
» “Series Interconnection of Passive Systems” on page 10-26
* “Feedback Interconnection of Passive Systems” on page 10-30

Relative Passivity Index
The positive real condition for passivity:
G(jw) + GH(jw) >0 VYw € R,

is equivalent to the small gain condition:

|| =Gl +GGw) ™! || <1 VYweR.

We can therefore use the peak gain of (I — G)(I + G)_1 as a measure of passivity.
Specifically, let

R =|u-6u+067Y..

Then G is passive if and only if R < 1, and R > 1 indicates a shortage of passivity. Note
that R is finite if and only if I + G is minimum phase. We refer to R as the relative passivity
index, or R-index. In the time domain, the R-index is the smallest r > 0 such that:

T T
[iy =-uriae<r? [11y +ul i

for all trajectories y(t) = Gu(t) and T > 0. When I + G is minimum phase, you can use

passiveplot to plot the principal gains of (I — G(jw))(I + G(jw))"l. This plot is entirely
analogous to the singular value plot (see sigma), and shows how the degree of passivity
changes with frequency and direction.

The following result is analogous to the Small Gain Theorem for feedback loops. It gives a
simple condition on R-indices for compensating a shortage of passivity in one system by
an excess of passivity in the other.

See Also

Small-R Theorem: Let G;(s) and Gy(s) be two linear systems with passivity R-indices Ry
and Ry, respectively. If R{Ry < 1, then the negative feedback interconnection of G; and G,
is stable.

+ ul vl

G2

See Also

getPassiveIndex | isPassive | passiveplot

Related Examples

“Passivity Indices” on page 10-18

“Parallel Interconnection of Passive Systems” on page 10-23
“Series Interconnection of Passive Systems” on page 10-26
“Feedback Interconnection of Passive Systems” on page 10-30
“About Sector Bounds and Sector Indices” on page 10-8

10-7

10 Passivity and Conic Sectors

About Sector Bounds and Sector Indices

10-8

Conic Sectors

In its simplest form, a conic sector is the 2-D region delimited by two lines, y = au and
y = bu.

The shaded region is characterized by the inequality (y — au)(y — bu) < 0. More generally,
any such sector can be parameterized as:

y

T
y]Q <0,
u u

where Q is a 2x2 symmetric indefinite matrix (Q has one positive and one negative
eigenvalue). We call Q the sector matrix. This concept generalizes to higher dimensions.
In an N-dimensional space, a conic sector is a set:

S= {zeRN: zTQz<o},

where Q is again a symmetric indefinite matrix.

About Sector Bounds and Sector Indices

Sector Bounds

Sector bounds are constraints on the behavior of a system. Gain constraints and passivity
constraints are special cases of sector bounds. If for all nonzero input trajectories u(t),
the output trajectory z(t) = (Hu)(t) of a linear system H(s) satisfies:

T
_L' TH)Qz(tdt <0, VT >0,

then the output trajectories of H lie in the conic sector with matrix Q. Selecting different
Q matrices imposes different conditions on the system's response. For example, consider
trajectories y(t) = (Gu)(t) and the following values:

G 0 -I
H(S)=(ES))’ Q=(—I 0)'

These values correspond to the sector bound:
£T

This sector bound is equivalent to the passivity condition for G(s):

Tro -1

-10

y(t)
u(t)

y(t)

dt<0, VT>0.
u(t)

T
[y wuwat >0, vr>o0.

In other words, passivity is a particular sector bound on the system defined by:
G

H= () |

I

Frequency-Domain Condition

Because the time-domain condition must hold for all T > 0, deriving an equivalent
frequency-domain bound takes a little care and is not always possible. Let the following:

Q=Wiw; - Wiw,

be (any) decomposition of the indefinite matrix Q into its positive and negative parts.

When w%" H(s) is square and minimum phase (has no unstable zeros), the time-domain
condition:

10-9

10 Passivity and Conic Sectors

10-10

T
[wo®" o Huwdt <o, vT >0
is equivalent to the frequency-domain condition:

H(jw) QH(jw) <0 VYw €R.

It is therefore enough to check the sector inequality for real frequencies. Using the
decomposition of Q, this is also equivalent to:

lwimwlim™, <1.

Note that WZT H is square when Q has as many negative eigenvalues as input channels in
H(s). If this condition is not met, it is no longer enough (in general) to just look at real

frequencies. Note also that if WZT H(s) is square, then it must be minimum phase for the
sector bound to hold.

This frequency-domain characterization is the basis for sectorplot. Specifically,

sectorplot plots the singular values of (WlTH(jw))(WzT H(jou))_1 as a function of

frequency. The sector bound is satisfied if and only if the largest singular value stays
below 1. Moreover, the plot contains useful information about the frequency bands where
the sector bound is satisfied or violated, and the degree to which it is satisfied or violated.

For instance, examine the sector plot of a 2-output, 2-input system for a particular sector.

rng(4, 'twister');

H = rss(3,4,2);

Q =1[-5.12 2.16 -2.04 2.17
2.16 -1.22 -0.28 -1.11
-2.04 -0.28 -3.35 0.00
2.17 -1.11 0.00 0.18];

sectorplot(H,Q)

About Sector Bounds and Sector Indices

Principal Indices {abs)

Sector R-index (R < 1 inside the sector)

ERH
10° “H"“--.___x/
T .-
107!
“,-.; 2 - 1 Iﬂ 1 .
102 107" 10" 10’ 102
Frequency (rad/s)

The plot shows that the largest singular value of (WlTH (jw))(WzT H(jw))_1 exceeds 1 below

about 0.5 rad/s and in a narrow band around 3 rad/s. Therefore, H does not satisfy the
sector bound represented by Q.

Relative Sector Index

We can extend the notion of relative passivity index to arbitrary sectors. Let H(s) be an
LTI system, and let:

Q=WiW, - WiW,, Wiw,=0

10-11

10 Passivity and Conic Sectors

10-12

be an orthogonal decomposition of Q into its positive and negative parts, as is readily
obtained from the Schur decomposition of Q. The relative sector index R, or R-index, is
defined as the smallest r > 0 such that for all output trajectories z(t) = (Hu)(t):

T
£ 2Tt) WIw, - PwWIw,y) z()dt <0, VT >0.

Because increasing r makes WTWl - r2W§ W, more negative, the inequality is usually
satisfied for r large enough. However, there are cases when it can never be satisfied, in
which case the R-index is R = + . Clearly, the original sector bound is satisfied if and
only of R < 1.

To understand the geometrical interpretation of the R-index, consider the family of cones
with matrix Q(r) = WlTW1 - rzwg W>. In 2D, the cone slant angle 6 is related to r by

IWal
tan(g) = o 20
an®) =

(see diagram below). More generally, tan(0) is proportional to R. Thus, given a conic
sector with matrix Q, an R-index value R < 1 means that we can reduce tan(f) (narrow
the cone) by a factor R before some output trajectory of H leaves the conic sector.
Similarly, a value R > 1 means that we must increase tan(8) (widen the cone) by a factor
R to include all output trajectories of H. This clearly makes the R-index a relative measure
of how well the response of H fits in a particular conic sector.

About Sector Bounds and Sector Indices

In the diagram,

|W12| |W22|
W 2w

and

tan(0) = %1 = g2

W1l

iz

When WZT H(s) is square and minimum phase, the R-index can also be characterized in the
frequency domain as the smallest r > 0 such that:

H(jw)? Wiw, - *Wiw,) H(jw) <0 VYw €R.

Using elementary algebra, this leads to:

R= maxll WIH(jw)WIH(jw) ™Y .

In other words, the R-index is the peak gain of the (stable) transfer function

d(s): = (Wi H(s))(WLH(s))~

1, and the singular values of @(jw) can be seen as the

10-13

10 Passivity and Conic Sectors

10-14

"principal" R-indices at each frequency. This also explains why plotting the R-index vs.
frequency looks like a singular value plot (see sectorplot). There is a complete analogy
between relative sector index and system gain. Note, however, that this analogy only

holds when W2T H(s) is square and minimum phase.
Directional Sector Index

Similarly, we can extend the notion of directional passivity index to arbitrary sectors.
Given a conic sector with matrix Q, and a direction 6Q, the directional sector index is the
largest T such that for all output trajectories z(t) = (Hu)(t):

£ L) (Q +160) z(t)dt <0, VT > 0.

The directional passivity index for a system G(s) corresponds to:

G 0 -I
(S))’ 0= (.

Hi) =1 -1 0

The directional sector index measures by how much we need to deform the sector in the
direction 6Q to make it fit tightly around the output trajectories of H. The sector bound is
satisfied if and only if the directional index is positive.

Common Sectors

There are many ways to specify sector bounds. Next we review commonly encountered
expressions and give the corresponding system H and sector matrix Q for the standard
form used by getSectorIndex and sectorplot:

T
[wow erEw®de <o, v >o0.
For simplicity, these descriptions use the notation:

T 2
Iz = [Ix©Idt,

and omit the VT > 0 requirement.
Passivity

Passivity is a sector bound with:

About Sector Bounds and Sector Indices

Gain constraint

The gain constraint |G|, < y is a sector bound with:

H(s) =

G(s) _ I 0
I)' Q= (O -y

Ratio of distances

Consider the "interior" constraint,

Iy = culr < rlulr
where ¢, r are scalars and y(t) = (Gu)(t). This is a sector bound with:
I —cl
—cI (c®-r3)I)

The underlying conic sector is symmetric with respect to y = cu. Similarly, the "exterior"
constraint,

ly = cullr > rlulr

is a sector bound with:

-1 cl
cl (r2 - 02)1 ‘

Double inequality

When dealing with static nonlinearities, it is common to consider conic sectors of the form
au? < yu < bu?,

where y = ¢(u) is the nonlinearity output. While this relationship is not a sector bound per
se, it clearly implies:

a £ T u®?dt < £ T ybude < b £ w2t

10-15

10 Passivity and Conic Sectors

along all I/O trajectories and for all T > 0. This condition in turn is equivalent to a sector
bound with:

1 —(a+b)/2

H(s) = —(a+b)2 ab

Q:

d)(l.)),

Product form

Generalized sector bounds of the form:

T
[o - ko o - Kuwydt < 0
correspond to:

21 —(Ky+ KD
—(Ky + KD) K[y + K3 Ky |

As before, the static sector bound:
(v—Kiw)(y - Kou) < 0

implies the integral sector bound above.

QSR dissipative

A system y = Gu is QSR-dissipative if it satisfies:

‘ET QS

sTrR
This is a sector bound with:

H(s) = [G(S)), Q= -

y\T

u(t)

y(t)

dt >0, VT>0.
u(t)

Qs
sTR

See Also

getSectorCrossover | getSectorIndex | sectorplot

10-16

See Also

Related Examples
. “About Passivity and Passivity Indices” on page 10-2

10-17

10 Passivity and Conic Sectors

Passivity Indices

10-18

This example shows how to compute various measures of passivity for linear time-
invariant systems.

Passive Systems

A linear system G(s) is passive when all I/O trajectories (u(t), y(t)) satisfy
T
_[; yl(tut)dt >0, VT >0

where y7(t) denotes the transpose of y(t).

u(t) yit)

G(s)

To measure "how passive" a system is, we use passivity indices.

* The input passivity index is defined as the largest v such that

£ T T u®dt > v £ LT Bum)dt

The system G is "input strictly passive" (ISP) when v > 0. v is also called the "input
feedforward passivity" (IFP) index and corresponds to the minimum feedforward action
needed to make the system passive.

* The output passivity index is defined as the largest p such that

T T
[0T ouwdt> o [y vt

The system G is "output strictly passive" (OSP) when p > 0. p is also called the "output
feedback passivity" (OFP) index and corresponds to the minimum feedback action needed
to make the system passive.

Passivity Indices

* The I/O passivity index is defined as the largest T such that

£ TyT(t)u(t)dt >T £ T(uT(t)u(t) +yT(b)y®)dt

The system is "very strictly passive" (VSP) if T > 0.

Circuit Example

Consider the following example. We take the current I as the input and the voltage V as
the output. Based on Kirchhoff's current and voltage law, we obtain the transfer function
for G(s),

v(s) (Ls+R)(Bs+)
I9) 12 +2Rs+&

+ 1
g v

G(s) =

LetR=2,L=1and C=0.1.

R=2;,L=1;, C=20.1;
s = tf('s');
G = (L*s+R)*(R*s+1/C)/(L*s"2 + 2*R*s+1/C);

Use isPassive to check whether G(s) is passive.
PF = isPassive(G)

PF

logical

Since PF = true, G(s) is passive. Use getPassiveIndex to compute the passivity indices
of G(s).

10-19

10 Passivity and Conic Sectors

10-20

% Input passivity index
nu = getPassivelIndex(G, 'in")

nu = 2

% Output passivity index
rho = getPassiveIndex(G, 'out')

rho = 0.2857

% I/0 passivity index
tau = getPassiveIndex(G, 'io")

tau = 0.2642

Since T > 0, the system G(s) is very strictly passive.

Frequency-Domain Characterization

A linear system is passive if and only if it is "positive real":
G(jw) + GH(jw) >0 VYw€eR.

The smallest eigenvalue of the left-hand-side is related to the input passivity index v:
1 .) .
D= 7m(jn)xmm(G(Jjw) + GH(Jw))

where Anin denotes the smallest eigenvalue. Similarly, when G(s) is minimum-phase, the
output passivity index is given by:

—_

p= 7min)xm(c;‘l(jw) + GH(jw)).
w

Verify this for the circuit example. Plot the Nyquist plot of the circuit transfer function.

nyquist(G)

Passivity Indices

Imaginary Axis

Nyquist Diagram

.
08 /
/
04
|
f \
0.2 |
|
S N { ___________________________________
II
nD2r | i

-1 0.5 0 0.5 1 1.5 2 2.5 3 3.
Real Axis

n

The entire Nyquist plot lies in the right-half plane so G(s) is positive real. The leftmost
point on the Nyquist curve is (x, y) = (2, 0) so the input passivity index is v = 2, the same

value we obtained earlier. Similarly, the leftmost point on the Nyquist curve for G_l(s)
gives the output passivity index value p = 0.286.

Relative Passivity Index

It can be shown that the "positive real" condition

G(jw) + G(jw) >0 YweR

is equivalent to the small gain condition

10-21

10 Passivity and Conic Sectors

|| =Gl +Glw) ™! || <1 YweR.

The relative passivity index (R-index) is the peak gain over frequency of (I — G)(I + G)_1
when I + G is minimum phase, and + « otherwise:

R=|u-oa+67Y..

In the time domain, the R-index is the smallest r > 0 such that

T T
[iy=-uiiae<r? [11y +ular

The system G(s) is passive if and only if R < 1, and the smaller R is, the more passive the
system is. Use getPassiveIndex to compute the R-index for the circuit example.
R = getPassiveIndex(G)

R = 0.5556

The resulting R value indicates that the circuit is a very passive system.

See Also

getPassivelndex | isPassive

Related Examples
. “About Passivity and Passivity Indices” on page 10-2

. “Parallel Interconnection of Passive Systems” on page 10-23
. “Series Interconnection of Passive Systems” on page 10-26
. “Feedback Interconnection of Passive Systems” on page 10-30

10-22

Parallel Interconnection of Passive Systems

Parallel Interconnection of Passive Systems

This example illustrates the properties of a parallel interconnection of passive systems.
Parallel Interconnection of Passive Systems

Consider an interconnection of two subsystems G; and Gy in parallel. The interconnected
system H maps the input r to the output y.

uz 2
= G2 Y
+
ul 1
r . @l Y1+ Y.,
H

If both systems G; and Gy are passive, then the interconnected system H is guaranteed to
be passive. Take for example

_0.1s+1 _ s242s+1

GO="52 S a0

Both systems are passive.

Gl = tf([0.1,1],[1,2]);
isPassive(G1)

ans = logical

1
G2 = tf([1,2,1],[1,3,10]);
isPassive(G2)

ans = logical
1

We can therefore expect their parallel interconnection H to be passive, as confirmed by

10-23

10 Passivity and Conic Sectors

10-24

H = parallel(G1l,G2);
isPassive(H)

ans = logical
1

Passivity Indices for Parallel Interconnection

There is a relationship between the passivity indices of G; and G, and the passivity
indices of the interconnected system H. Let v and v, denote the input passivity indices
for G; and Gy, and let p; and p; denote the output passivity indices. If all these indices are

nonnegative, then the input passivity index v and the output passivity index p for the
parallel interconnection H satisfy

P102
V=01 + Dy, > —
TR CN p1+ P

In other words, we can infer some minimum level of input and output passivity for the
parallel connection H from the input and output passivity indices of G; and Gy. For

details, see the paper by Yu, H., "Passivity and dissipativity as design and analysis tools
for networked control systems," Chapter 2, PhD Thesis, University of Notre Dame, 2012.
Verify the lower bound for the input passivity index v.

% Input passivity index for Gl
nul = getPassiveIndex(Gl, 'input');
% Input passivity index for G2

nu2 = getPassiveIndex(G2, 'input');
% Input passivity index for H

nu = getPassivelndex(H, 'input"')

nu = 0.3777

% Lower bound
nul+nu2

ans = 0.1474

Similarly, verify the lower bound for the output passivity index of H.

% Output passivity index for Gl
rhol = getPassiveIndex(Gl, 'output');
% Output passivity index for G2
rho2 = getPassivelIndex(G2, 'output');

See Also

% Output passivity index for H
rho = getPassivelIndex(H, 'output"')

rho = 0.6450

% Lower bound
rhol*rho2/(rhol+rho2)

ans = 0.2098

See Also

getPassiveIndex | isPassive

Related Examples

. “About Passivity and Passivity Indices” on page 10-2

. “Series Interconnection of Passive Systems” on page 10-26

. “Feedback Interconnection of Passive Systems” on page 10-30

10-25

10 Passivity and Conic Sectors

Series Interconnection of Passive Systems

10-26

This example illustrates the properties of a series interconnection of passive systems.

Series Interconnection of Passive Systems

Consider an interconnection of two subsystems G; and G; in series. The interconnected
system H is given by the mapping from input u to output yy.

In contrast with parallel and feedback interconnections, passivity of the subsystems G;
and G, does not guarantee passivity for the interconnected system H. Take for example

552 +3s+1 s2+s+5s+0.1
Gi1(s) = ———, Gy(s) = .
1s) s2+2s+1 2(5) SS+2s2+3s+4

Both systems are passive as confirmed by

Gl = tf([5 3 11,I[1,2,11);
isPassive(G1)

ans = logical
1
G2 = tf([1,1,5,.1],[1,2,3,4]);
isPassive(G2)
ans = logical

1

However the series interconnection of G; and G, is not passive:

Series Interconnection of Passive Systems

Imaginary Axis

H = G2*G1;
isPassive(H)

ans = logical
0

This is confirmed by verifying that the Nyquist plot of G,G is not positive real.

nyquist(H)
Nyquist Diagram
15 ; - - - - - -
10 | L T T 1
—f“’f T~
st/ N
{ I|
N
) S, T E T) T
- — \
\“‘“a% -
DT __—
A0 F Te—— —— E
15 ' ' ' ' ' ' '
-2 0 2 4 g 8 10 12 14
Real Axis

Passivity Indices for Series Interconnection

While the series interconnection of passive systems is not passive in general, there is a
relationship between the passivity indices of G; and G, and the passivity indices of

10-27

10 Passivity and Conic Sectors

10-28

H = GyGj. Let v1 and vy denote the input passivity indices for G; and Gy, and let p; and p;
denote the output passivity indices. If all these indices are positive, then the input
passivity index v and the output passivity index p for the series interconnection H satisfy

. _0.125 . 0.125
P12 b1y

In other words, the shortage of passivity at the inputs or outputs of H is no worse than
the right-hand-side expressions. For details, see the paper by Arcak, M. and Sontag, E.D.,
"Diagonal stability of a class of cyclic systems and its connection with the secant
criterion," Automatica, Vol 42, No. 9, 2006, pp. 1531-1537. Verify these lower bounds for
the example above.

% Output passivity index for Gl
rhol = getPassivelIndex(Gl, 'output');
% Output passivity index for G2
rho2 = getPassivelndex(G2, 'output');
% Input passivity index for H=G2*Gl
nu = getPassiveIndex(H, 'input')

nu = -1.2875

% Lower bound
-0.125/(rhol*rho2)

ans = -2.4119

Similarly, verify the lower bound for the output passivity index of H.

%

n

nput passivity index for Gl
ul = getPassiveIndex(Gl, 'input');
Input passivity index for G2
nu2 = getPassiveIndex (G2, 'input');
% Output passivity index for H=G2*Gl
rho = getPassivelIndex(H, 'output"')

I
1

%

rho = -0.6966

% Lower bound
-0.125/(nul*nu2)

See Also

ans = -5.9420

See Also

getPassivelIndex | isPassive

Related Examples

. “About Passivity and Passivity Indices” on page 10-2

. “Parallel Interconnection of Passive Systems” on page 10-23

. “Feedback Interconnection of Passive Systems” on page 10-30

10-29

10 Passivity and Conic Sectors

Feedback Interconnection of Passive Systems

10-30

This example illustrates the properties of a feedback interconnection of passive systems.

Feedback Interconnection of Passive Systems

Consider an interconnection of two subsystems G; and Gy in feedback. The
interconnected system H maps the input r to the output y;.

r ul vyl
Y G1 -

G2

If both systems G; and G, are passive, then the interconnected system H is guaranteed to
be passive. Take for example

=s2+s+1
s2+s+4’

s+ 2
S+5°

G1(s) Ga(s) =

Both systems are passive as confirmed by

G]. = tf([lllil]l [11154]);
isPassive(G1)

ans = logical
1

G2 = tf([1,2],[1,5]);
isPassive(G2)

ans = logical
1

The interconnected system is therefore passive.

Feedback Interconnection of Passive Systems

Imaginary Axis

H = feedback(G1l,G2);
isPassive(H)

ans = logical
1
This is confirmed by verifying that the Nyquist plot of H is positive real.

nyquist(H)

Nyquist Diagram

1 . ; . .
-1 -0.5 0 0.5 1 1
Real Axis

en

Passivity Indices for Feedback Interconnection

There is a relationship between the passivity indices of G; and Gy and the passivity

indices of the interconnected system H. Let v1 and vy denote the input passivity indices

10-31

10 Passivity and Conic Sectors

10-32

for G; and Gy, and let p; and p; denote the output passivity indices. If all these indices are

positive, then the input passivity index v and the output passivity index p for the feedback
interconnection H satisfy

D
> 102 ’
vt 0

pzpt+ry.

In other words, we can infer some minimum level of input and output passivity for the
closed-loop system H from the input and output passivity indices of G; and Gy. For details,
see the paper by Zhu, F. and Xia, M and Antsaklis, P]J., "Passivity analysis and passivation
of feedback systems using passivity indices," American Control Conference , 2014, pp.
1833-1838. Verify the lower bound for the input passivity index v.

% Input passivity index for G1

nul = getPassiveIndex(Gl, 'input');
% Output passivity index for G2

rho2 = getPassiveIndex (G2, 'output');
% Input passivity index for H

nu = getPassiveIndex(H, 'input')

nu = 0.1293

% Lower bound
nul*rho2/(nul+rho2)

ans = 2.4923e-06

Similarly, verify the lower bound for the output passivity index of H.

% Output passivity index for Gl

rhol = getPassivelndex(Gl, 'output');
% Input passivity index for G2

nu2 = getPassivelndex (G2, 'input');
% Output passivity index for H

rho = getPassivelndex(H, 'output"')

rho = 0.4485

% Lower bound
rhol+nu2

See Also

ans = 0.4000

See Also

getPassivelIndex | isPassive

Related Examples

. “About Passivity and Passivity Indices” on page 10-2

. “Parallel Interconnection of Passive Systems” on page 10-23
. “Series Interconnection of Passive Systems” on page 10-26
. “Passive Control with Communication Delays” on page 17-44

10-33

Control Design

35

PID Controller Design

+ “PID Controller Design at the Command Line” on page 11-2

* “Designing Cascade Control System with PI Controllers” on page 11-10

* “Tune 2-DOF PID Controller (Command Line)” on page 11-16

* “Tune 2-DOF PID Controller (PID Tuner)” on page 11-22

» “PID Controller Types for Tuning” on page 11-32

* “PID Controller Tuning in Simulink” on page 11-40

* “Design PID Controller Using Estimated Frequency Response” on page 11-49

* “Design Family of PID Controllers for Multiple Operating Points” on page 11-59
* “Design PID Controller Using Simulated I/O Data” on page 11-68

11 riD controller Design

PID Controller Design at the Command Line

11-2

This example shows how to design a PID controller for the plant given by:

1
(s+1)°°

Sys =

As a first pass, create a model of the plant and design a simple PI controller for it.

sys = zpk([],[-1 -1 -11,1);
[C_pi,info] = pidtune(sys, 'PI")

C pi=

1
Kp + Ki * ---
s

with Kp = 1.14, Ki = 0.454
Continuous-time PI controller in parallel form.

info = struct with fields:

Stable: 1
CrossoverFrequency: 0.5205
PhaseMargin: 60.0000

C piis a pid controller object that represents a PI controller. The fields of info show
that the tuning algorithm chooses an open-loop crossover frequency of about 0.52 rad/s.

Examine the closed-loop step response (reference tracking) of the controlled system.

T pi = feedback(C pi*sys, 1);
step(T pi)

PID Controller Design at the Command Line

Amplitude

=
w
T

=

o
T

-—

0 2 4 6 8 10 12 14
Time (seconds)

To improve the response time, you can set a higher target crossover frequency than the
result that pidtune automatically selects, 0.52. Increase the crossover frequency to 1.0.

[C pi fast,info] = pidtune(sys,'PI',1.0)

C pi fast

1

S

*

Kp + Ki

with Kp = 2.83, Ki = 0.0495

Continuous-time PI controller in parallel form.

11-3

11 riD controller Design

info = struct with fields:

Stable: 1

CrossoverFrequency: 1
PhaseMargin: 43.9973

The new controller achieves the higher crossover frequency, but at the cost of a reduced
phase margin.

Compare the closed-loop step response with the two controllers.

T pi fast = feedback(C pi fast*sys,1);
step(T_pi, T pi fast)

axis ([0 30 0 1.4])
legend('PI','PI,fast"')

11-4

PID Controller Design at the Command Line

Step Response
14 T T T T T
P
P, fast
1.2 1 T
A N

) i

|

I f —-]
ik} | i o - — |
%_ | !

[| NS
Soef II.' h 1

[]

041] iy

[

II I|

| |I

0.2/ |
|II
I: 1 1 1 1 1
5 10 15 20 25 30
Time (seconds)

This reduction in performance results because the PI controller does not have enough
degrees of freedom to achieve a good phase margin at a crossover frequency of 1.0 rad/s

Adding a derivative action improves the response.
Design a PIDF controller for Gc with the target crossover frequency of 1.0 rad/s.

[C_pidf fast,info] = pidtune(sys, 'PIDF',1.0)

C pidf fast

s
11-5

11 riD Controller Design

11-6

with Kp = 2.72, Ki = 0.985, Kd = 1.72, Tf = 0.00875

Continuous-time PIDF controller in parallel form.

info = struct with fields:

Stable: 1

CrossoverFrequency: 1
PhaseMargin: 60.0000

The fields of info show that the derivative action in the controller allows the tuning
algorithm to design a more aggressive controller that achieves the target crossover
frequency with a good phase margin.

Compare the closed-loop step response and disturbance rejection for the fast PI and PIDF
controllers.

T pidf fast = feedback(C pidf fast*sys,1);
step(T _pi fast, T pidf fast);

axis([0 30 0 1.41);

legend('PI, fast', 'PIDF,fast');

PID Controller Design at the Command Line

Amplitude

Step Response
1.4 :
P, fast
FIDF fast
1.2 | T
1
0.8 N ——]
0.6]
0.4 _
0.2 il
E 1 1 1 1
0 5 10 15 20 25 30

Time (seconds)

You can compare the input (load) disturbance rejection of the controlled system with the
fast PI and PIDF controllers. To do so, plot the response of the closed-loop transfer
function from the plant input to the plant output.

S pi fast = feedback(sys,C pi fast);

S pidf fast = feedback(sys,C pidf fast);
step(S_pi fast,S pidf fast);

axis([0 50 0 0.41]1);

legend('PI,fast', 'PIDF,fast');

11-7

11 riD controller Design

Step Response

P, fast
0.35 IIlr\'| FIDF fast| -
|

0251 /1| /\
|| I|I ,'II —r"’-'_x__

=
Md
P
s
J
I
f

)
)

Amplitude

=
n
i
|
|
)
)

0.1 F

E I i | i | | i i i
0 5 10 15 20 25 30

Time (seconds)

Cad
n
B
=
I
o
£
[

This plot shows that the PIDF controller also provides faster disturbance rejection.

See Also
pid | pidtune

More About
. “Choosing a PID Controller Design Tool”

“Designing Cascade Control System with PI Controllers” on page 11-10

11-8

See Also

“PID Controller Design for Fast Reference Tracking”

11-9

11 riD Controller Design

Designing Cascade Control System with Pl Controllers

11-10

This example shows how to design a cascade control loop with two PI controllers using
the pidtune command.

Introduction to Cascade Control

Cascade control is mainly used to achieve fast rejection of disturbance before it
propagates to the other parts of the plant. The simplest cascade control system involves
two control loops (inner and outer) as shown in the block diagram below.

Distuthatice s

Setpoint ~

Chafer loop

Controller C1 in the outer loop is the primary controller that regulates the primary
controlled variable y1 by setting the set-point of the inner loop. Controller C2 in the inner
loop is the secondary controller that rejects disturbance d2 locally before it propagates to
P1. For a cascade control system to function properly, the inner loop must respond much
faster than the outer loop.

In this example, you will design a single loop control system with a PI controller and a
cascade control system with two PI controllers. The responses of the two control systems
are compared for both reference tracking and disturbance rejection.

Plant
In this example, the inner loop plant P2 is

_ 3
P2s) =532
The outer loop plant P1 is

10
s +1)°3

Pl(s) =

Designing Cascade Control System with Pl Controllers

P2
P1

zpk([1,-2,3);
zpk([1,[-1 -1 -1],10);

Designing a Single Loop Control System with a Pl Controller

Use pidtune command to design a PI controller in standard form for the whole plant
model P = P1 * P2,

Distuthatice s

Setpoint o

The desired open loop bandwidth is 0.2 rad/s, which roughly corresponds to the response
time of 10 seconds.

The plant model is P = P1*P2

= P1*P2;

Use a PID or PIDSTD object to define the desired controller structure
= pidstd(1,1);

Tune PI controller for target bandwidth is 0.2 rad/s

= pidtune(P,C,0.2);

OO O ° T °

(@]
]

1 1
Kp * (1 4+ ---- % ---)
Ti S
with Kp = 0.0119, Ti = 0.849
Continuous-time PI controller in standard form

Designing a Cascade Control System with Two Pl Controllers

The best practice is to design the inner loop controller C2 first and then design the outer
loop controller C1 with the inner loop closed. In this example, the inner loop bandwidth is
selected as 2 rad/s, which is ten times higher than the desired outer loop bandwidth. In

11-11

11 riD controller Design

order to have an effective cascade control system, it is essential that the inner loop
responds much faster than the outer loop.

Tune inner-loop controller C2 with open-loop bandwidth at 2 rad/s.

C2 = pidtune(P2,pidstd(1,1),2);
C2
C2 =
1 1
Kp * (1 + ---- % ---)
Ti S

with Kp = 0.244, Ti = 0.134
Continuous-time PI controller in standard form

Tune outer-loop controller C1 with the same bandwidth as the single loop system.

% Inner loop system when the control loop is closed first
clsys = feedback(P2*C2,1);

% Plant seen by the outer loop controller Cl is clsys*P1l
Cl = pidtune(clsys*P1l,pidstd(1,1),0.2);

C1

Cl =
1 1
Kp * (1 4 ---- % ---)
Ti S
with Kp = 0.015, Ti = 0.716

Continuous-time PI controller in standard form

Performance Comparison

First, plot the step reference tracking responses for both control systems.

% single loop system for reference tracking
sysl = feedback(P*C,1);

sysl.Name = 'Single Loop';

% cascade system for reference tracking
sys2 = feedback(clsys*P1*Cl,1);

11-12

Designing Cascade Control System with PI Controllers

sys2.Name = 'Cascade’;
% plot step response
figure;

step(sysl, 'r',sys2,'b")
legend('show', 'location', 'southeast')
title('Reference Tracking')

Reference Tracking

1.2 T T T

=
w
T

Amplitude

=
I
T

0.2

Single Loop
Cascade

0 5 10 15
Time (seconds)

20

25

30

Secondly, plot the step disturbance rejection responses of d2 for both control systems.

% single loop system for rejecting d2
sysdl = feedback(P1l,P2*C);

sysdl.Name = 'Single Loop';

% cascade system for rejecting d2
sysd2 = P1/(1+P2*C2+P2*P1*C1*(C2);

11-13

11 riD controller Design

11-14

sysd2.Name = 'Cascade’;
% plot step response
figure;

step(sysdl, 'r',sysd2,'b")
legend('show")
title('Disturbance Rejection')

Disturbance Rejection

E T T T T T

Single Loop
Cascade

Amplitude

0 5 10 15 20 25
Time (seconds)

30

35

See Also

From the two response plots you can conclude that the cascade control system performs
much better in rejecting disturbance d2 while the set-point tracking performances are
almost identical.

See Also
pidstd | pidtune

More About
. “Choosing a PID Controller Design Tool”
. “PID Controller Design at the Command Line” on page 11-2

. “Tune PID Controller to Favor Reference Tracking or Disturbance Rejection
(Command Line)”

11-15

11 riD controller Design

Tune 2-DOF PID Controller (Command Line)

This example shows how to design a two-degree-of-freedom (2-DOF) PID controller at the
command line. The example also compares the 2-DOF controller performance to the
performance achieved with a 1-DOF PID controller.

2-DOF PID controllers include setpoint weighting on the proportional and derivative
terms. Compared to a 1-DOF PID controller, a 2-DOF PID controller can achieve better
disturbance rejection without significant increase of overshoot in setpoint tracking. A
typical control architecture using a 2-DOF PID controller is shown in the following

diagram.
if
+
r |, . G .y
2-DOF PID Plant
Controller

For this example, design a 2-DOF controller for the plant given by:

1

G = Fromror

Suppose that your target bandwidth for the system is 1.5 rad/s.
wc = 1.5;

G = tf(1,[1 0.5 0.11);
C2 = pidtune(G, 'PID2"',wc)

C2 =

u=Kp (b*r-y) + Ki --- (r-y) + Kd*s (c*r-y)

11-16

Tune 2-DOF PID Controller (Command Line)

with Kp = 1.26, Ki = 0.255, Kd = 1.38, b = 0.665, ¢ = 0

Continuous-time 2-DOF PID controller in parallel form.

Using the type 'PID2' causes pidtune to generate a 2-DOF controller, represented as a
pid2 object. The display confirms this result. pidtune tunes all controller coefficients,
including the setpoint weights b and c, to balance performance and robustness.

To compute the closed-loop response, note that a 2-DOF PID controller is a 2-input, 1-
output dynamic system. You can resolve the controller into two channels, one for the
reference signal and one for the feedback signal, as shown in the diagram. (See
“Continuous-Time 2-DOF PID Controller Representations” on page 2-16 for more
information.)

Decompose the controller into the components Cr and Cy, and use them to compute the
closed-loop response from r to y.

C2tf = tf(C2);

Cr = C2tf(1);
Cy = C2tf(2);
T2 = Cr*feedback(G,Cy,+1);

To examine the disturbance-rejection performance, compute the transfer function from d
to y.

S2 = feedback(G,Cy,+1);

11-17

11 riD controller Design

For comparison, design a 1-DOF PID controller with the same bandwidth and compute the
corresponding transfer functions. Then compare the step responses.

C1l = pidtune(G, 'PID',wc);
Tl = feedback(G*C1,1);
S1 = feedback(G,Cl);

subplot(2,1,1)

stepplot(T1,T2)
title('Reference Tracking')
subplot(2,1,2)

stepplot(S1,S52)
title('Disturbance Rejection')
legend('1-DOF','2-DOF")

Reference Tracking

Q r”f-----_
=
=
ﬁ]
£
<
4 6 8 10 12 14
Time (seconds)
Disturbance Rejection
06 f ' ' ' ' ' 1
’/ N 1-DOF
W / \ 2-DOF
Soaf \ :
ﬁ II '\\
E 02| \\x\ 1
0 /) : i e T ;
0 5 10 15 20 25 30

Time (seconds)

11-18

Tune 2-DOF PID Controller (Command Line)

The plots show that adding the second degree of freedom eliminates the overshoot in the
reference-tracking response without any cost to disturbance rejection. You can improve
disturbance rejection too using the DesignFocus option. This option causes pidtune to
favor disturbance rejection over setpoint tracking.

opt = pidtuneOptions('DesignFocus', 'disturbance-rejection');
C2dr = pidtune(G, 'PID2"',wc,opt)
C2dr =

1

u=Kp (b*r-y) + Ki --- (r-y) + Kd*s (c*r-y)
s

with Kp = 1.72, Ki = 0.593, Kd = 1.25, b =0, ¢ =0

Continuous-time 2-DOF PID controller in parallel form.

With the default balanced design focus, pidtune selects a b value between 0 and 1. For
this plant, when you change design focus to favor disturbance rejection, pidtune sets b
= 0 and c = 0. Thus, pidtune automatically generates an I-PD controller to optimize for
disturbance rejection. (Explicitly specifying an I-PD controller without setting the design
focus yields a similar controller.)

Compare the closed-loop responses using all three controllers.

C2dr tf = tf(C2dr);

Cdr_r = C2dr_tf(1);
Cdr_y = C2dr_tf(2);
T2dr = Cdr_r*feedback(G,Cdr_y,+1);

S2dr = feedback(G,Cdr_y,+1);

subplot(2,1,1)

stepplot(T1,T2,T2dr)

title('Reference Tracking')

subplot(2,1,2)

stepplot(S1,S2,S2dr);

title('Disturbance Rejection')
legend('1-DOF',"'2-DOF','2-DOF rejection focus')

11-19

11 riD controller Design

Reference Tracking

Amplitude

0 2 4 B 8 10 12 14 16 18 20
Time (seconds)

Disturbance Rejection

E.q - T T T T T 7
; ,.-’/ \, 1-DOF
© \ 2-DOF
= A L [i
= IUC \\ 2-DOF rejection focus
3 \.
E 02T \xm]
U i | pmpapappcsprererr TT— i
0 5 10 15 20 25 30

Time (seconds)

The plots show that the disturbance rejection is further improved compared to the
balanced 2-DOF controller. This improvement comes with some sacrifice of reference-
tracking performance, which is slightly slower. However, the reference-tracking response

still has no overshoot.

Thus, using 2-DOF control can improve disturbance rejection without sacrificing as much
reference tracking performance as 1-DOF control. These effects on system performance
depend strongly on the properties of your plant. For some plants and some control

11-20

See Also

bandwidths, using 2-DOF control or changing the design focus has less or no impact on
the tuned result.

See Also
pid2 | pidtune

More About

. “Designing PID Controllers with PID Tuner”

. “Two-Degree-of-Freedom PID Controllers” on page 2-16
. “Tune 2-DOF PID Controller (PID Tuner)” on page 11-22
. “Analyze Design in PID Tuner”

11-21

11 riD controller Design

Tune 2-DOF PID Controller (PID Tuner)

This example shows how to design a two-degree-of-freedom (2-DOF) PID controller using
PID Tuner. The example also compares the 2-DOF controller performance to the
performance achieved with a 1-DOF PID controller.

In this example, you represent the plant as an LTI model on page 1-13. For information
about using PID Tuner to tune a PID Controller (2DOF) block in a Simulink model, see
“Design Two-Degree-of-Freedom PID Controllers” (Simulink Control Design).

2-DOF PID controllers include setpoint weighting on the proportional and derivative
terms. Compared to a 1-DOF PID controller, a 2-DOF PID controller can achieve better
disturbance rejection without significant increase of overshoot in setpoint tracking. A
typical control architecture using a 2-DOF PID controller is shown in the following

diagram.
el
f—— " .
O, i € .}
2-DOF PID Plant
Controller

For this example, first design a 1-DOF controller for the plant given by:

~ 1
T s2+4055+0.1°

G(s)

G = tf(1,[1 0.5 0.11);
pidTuner(G, 'PID")

11-22

Tune 2-DOF PID Controller (PID Tuner)

4\ PID Tuner - Step Plot: Reference tracking EI@
P T=
Plant: Type: PID | Domain: & ' @ - | » s S S E o
G- Time - Slower Rezponze Time (seconds) Faster = =3
Form: |Farallel - ; , , , , ; h‘ T [
| Inspect) bl Add Piot - — f f ———@ f i 6 ~| Reset " =
@ Options Aggressive Transiznt Behavior Robust Design Parameters -
PLANT CONTROLLER DESIGN TUNING TOOLS RESULTS
5 - | Step Plot: Reference tracking |
=
o
o
E Step Plot: Reference tracking

1.2 T T T T

Amplitude
S
T

=]

o

ra
o

0 5 10 15 20

Time (seconds)

Controller Parameters: Kp = 0.2354, Ki = 0.05096, Kd = 0.2419

Suppose for this example that your application requires a faster response than the PID
Tuner initial design. In the text box next to the Response Time slider, enter 2.

11-23

11 riD Controller Design

4\ PID Tuner - Step Plot: Reference tracking EI@
PID TUNER : Besl e :
Plant: Type: | PID + Domain: & ; " o— o = = E o
G- Time - Slower Rezponze Time (seconds) Faster = =3
Form: |Farallel - -
(_{ Inspect k£ Add Plot ~ f ; ; } @ - i 0.6 % Reset Show Export
@ options Aggressie Transient Behavior e T T 2
PLANT CONTROLLER DESIGN TUNING TOOLS RESULTS
5 - | Step Plot: Reference tracking |
=
o
o
= .
E Step Plot: Reference tracking
12 T T T T T T T T T
@
=]
2 i
=1
=
g
| | | | | |
0 2 4 [8 10 12 14 16 18 20

Time (seconds)

Controller Parameters: Kp = 0.7254, Ki = 0.1435, Kd = 0.8801

The resulting response is fast, but has a considerable amount of overshoot. Design a 2-
DOF controller to improve the overshoot. First, set the 1-DOF controller as the baseline
controller for comparison. Click the Export arrow = and select Save as Baseline.

11-24

Tune 2-DOF PID Controller (PID Tuner)

=

Export

-
s
Export

,E Export plant or

™

rence tracking e
% Save tuned controller

controller to MATLAB workspace

>,

I I I l as the baseline design
Tunad raspansa

Design the 2-DOF controller. In the Type menu, select PID2.

11-25

11 riD Controller Design

.

_JL PID Tuner - Step Plot: Reference tracking

PID TUNER

Plant: Type: FID - Domain: &

G~ I 1-DOF CONTROLLER TYPES

' Inspect P

PLANT | 50l |
| Step Plot: Refer

|
=

Data Browser
=)
=]

2-DOF CONTROLLER TYPES

FI2
PD2
FID2
PDF2

FIDF2

2-DOF FID WITH FIXED B & C

I-PD (b=0,c=0

Amplitude

IDP (b=0,c=1]
PLD (b=1,c=0)
1-PDF (b =10, c = 0]

IDFP(b=0,c=1]

PILDF(b=1,c=0)
‘::" I I

PID Tuner generates a 2-DOF controller with the same target response time. The
controller parameters displayed at the bottom right show that PID Tuner tunes all

11-26

Tune 2-DOF PID Controller (PID Tuner)

Data Browser

controller coefficients, including the setpoint weights b and ¢, to balance performance
and robustness. Compare the 2-DOF controller performance (solid line) with the
performance of the 1-DOF controller that you stored as the baseline (dotted line).

| Step Plot: Reference tracking

Step Plot: Reference tracking
T T T
—— Tunad rasponsa
= = = Bazgling rasponsa

=

Amplitude

LB B R B e e =

/ Controller was re-tuned because controller type was changed.

10 12
Time (seconds)

A

< Controller Parameters: Kp = 0.7254, Ki = 0.1495, Kd = 0.8801, b = 0.4251, c = 0

Adding the second degree of freedom eliminates the overshoot in the reference tracking

response. Next, add a step response plot to compare the disturbance rejection
performance of the two controllers. Select Add Plot > Input Disturbance Rejection.

11-27

11 riD controller Design

.

_JL PID Tuner - Step Plot: Reference tracking

PID TUNER

Type: PID2 - Domair: « | '

G~ Form: Parallel - Time h R
4 Inspect © op k] Add Plot

FLANT | CONTROLLER |
| Step Plot: Reference tracking Plant

Open-loop

Data Browser

Reference tracking

Controller effort
Input disturbance rejection L\\5

Qutput disturbance rejection

Plant
08 |- ¥ Open-loop
i Reference tracking

I Controller effort

=i

m
T

-

I Input disturbance rejection

Amplitude

Qutput disturbance rejection

PID Tuner tiles the disturbance-rejection plot side by side with the reference-tracking
plot.

11-28

Tune 2-DOF PID Controller (PID Tuner)

| Step Plot: Reference tracking |

Step Plot: Reference tracking

=
m

=]
m

Amplitude

— Tunad aspansa
= = = Basaline rasponsea

10

Time (seconds)

3]

[Step Plot: Input disturbance rejection 1

Step Plot: Input disturbance rejection

=
=]

(=]
o

Amplitude

— Tunad rasponsa
= = == Bazsline rasponsa

5 10 15 20

Time (seconds)

The disturbance-rejection performance is identical with both controllers. Thus, using a 2-
DOF controller eliminates reference-tracking overshoot without any cost to disturbance

rejection.

You can improve disturbance rejection too by changing the PID Tuner design focus. First,
click the Export arrow = and select Save as Baseline again to set the 2-DOF

controller as the baseline for comparison.

Change the PID Tuner design focus to favor reference tracking without changing the

response time or the transient-behavior coefficient. To do so, click @ Options, and in
the Focus menu, select Input disturbance rejection.

11-29

11 riD controller Design

ontroller Options X
Display
Show Baseline Controller Data
Design
=

Focus: |Balanced
Ealanced
Reference tracking
Discref Input disturbance rejection *

Integral Formula: |Forward Euler =
Derivative Formula: |Forward Euler ~

® Help

PID Tuner automatically retunes the controller coefficients with a focus on disturbance-

rejection performance.

|. Step Plot: Input disturbance rejection

T | Step Plot: Reference tracking
)
=
[==]
=
E Step Plot: Reference tracking Step Plot: Input disturbance rejection
1 T — 1.2 T T T T
~ -~ Tuned rasponsa —— Tunad rasponsa
08 = = = Basalina raspansa [4 = = = Basalina rasponsa
1 ro 1
08 | 4 1 L
" n
o7 f 4 1 \
0.8 F 1 1
! '
06 ! 1 1
o) I ©
b= h=] V
=} ! i = \
Zosy i 1 = \ 1
=] =
= ! < 1
04 g '
! \
1 04 N 1
03 1 \
' \
oz F g N
[02 F \ 1
] \
04 1 S
~
y i i i i - k) - L
0 0
0 5 10 15 20 0 5 10 15 20 25
Time (seconds)

Time (seconds)

iJ Controller was re-tuned using the new Design Focus "disturbance-rejection” Controller Parameters: Kp = 0.883, Ki=0.2501, Kd = 07795, b= 0,c= 0

11-30

See Also

With the default balanced design focus, PID Tuner selects a b value between 0 and 1. For
this plant, when you change design focus to favor disturbance rejection, PID Tuner sets

b = 0 and c = 0. Thus, PID Tuner automatically generates an I-PD controller to optimize
for disturbance rejection. (Explicitly specifying an I-PD controller without setting the
design focus yields a similar controller.)

The response plots show that with the change in design focus, the disturbance rejection is
further improved compared to the balanced 2-DOF controller. This improvement comes
with some sacrifice of reference-tracking performance, which is slightly slower. However,
the reference-tracking response still has no overshoot.

Thus, using 2-DOF control can improve disturbance rejection without sacrificing as much
reference tracking performance as 1-DOF control. These effects on system performance
depend strongly on the properties of your plant and the speed of your controller. For some
plants and some control bandwidths, using 2-DOF control or changing the design focus
has less or no impact on the tuned result.

See Also

pidTuner

More About

. “Designing PID Controllers with PID Tuner”

. “Two-Degree-of-Freedom PID Controllers” on page 2-16

. “Tune 2-DOF PID Controller (Command Line)” on page 11-16
. “Analyze Design in PID Tuner”

11-31

11 riD controller Design

PID Controller Types for Tuning

11-32

PID Tuner and the pidtune command can tune many PID and 2-DOF PID controller
types. The term controller type refers to which terms are present in the controller action.
For example, a PI controller has only a proportional and an integral term, while a PIDF
controller contains proportional, integrator, and filtered derivative terms. This topic
summarizes the types of PID controllers available for tuning with PID Tuner and
pidtune.

Specifying PID Controller Type

To select the controller type, use one of these methods:

* For command-line tuning, provide the type argument to the pidtune command. For
example, C = pidtune(G, 'PI') tunes a PI controller for plant G.

* For tuning in PID Tuner:

* Provide the type argument to the pidTuner command when you open PID Tuner.
For example, pidTuner (G, 'PIDF2') opens PID Tuner with an initial design that
is a 2-DOF PID controller with a filter on the derivative term.

* Provide the baseline-controller Cbase argument to the pidTuner command when
you open PID Tuner. PID Tuner designs a controller of the same type as Cbase.
For example, suppose CO is a pid controller object that has proportional and
derivative action only (PD controller). Then, pidTuner(G,C0) opens PID Tuner
with an initial design that is a PD controller.

* In PID Tuner, use the Type menu to change controller types.

PID Controller Types for Tuning

-

-‘ PID Tuner - Step Plot: Reference tracking

PID TUNER

Type:
G -
Form:
H Inspect
PLANT ‘ COl

PID Domain:

1-DOF CONTROLLER TYPES

-

P

1

| [Data Browvser

| Step Plot: Refen

Amplitude

PI

PD

PID

FDF

PIDF

PI2

PD2

FID2

PDF2

PIDF2

2-DOF PID WITH FIXED B & C

IPD [b=0,c=0]
IDP (b=0,c=1]
FILD (b=1¢=0
I-PDF (b =0, c = 0]

IDF-P(b=0,c=1)

PL.DF (b =1, c =0

2-DOF CONTROLLER TYPES

ik I
0 2

11-33

11 riD controller Design

1-DOF Controllers

The following table summarizes the available 1-DOF PID controller types and provides
representative controller formulas for parallel form. The standard-form and discrete-time

formulas are analogous.

Type |Controller Actions Continuous-Time Discrete-Time
Controller Formula Controller Formula
(parallel form) (parallel form,
ForwardEuler
integration method)
P Proportional only K, K,
I Integral only K; Ts
_t K;
S z-1
PI Proportional and integral K T.
S e Ky + = Ky + K3
S z—-1
PD Proportional and derivative Ky, + Kgs K, + Kdz; 1
S

PDF Proportional and derivative Kgs Ko+ K 1
with first-order filter on pt Tps + 1 p dT Tg
derivative term frz=1

PID Proportional, integral, and K; Ts
derivative Kp+ 5 +Kgs Kp + K 7—1

z-1
+ Ky T,

PIDF |Proportional, integral, and K; Kgs G
derivative with first-order Kp+ s + Trs+1 Kp + K z—1
filter on derivative term

+ Ky 1 Ts
Ty + z—1

2-DOF Controllers

PID Tuner can automatically design 2-DOF PID controller types with free setpoint
weights. The following table summarizes the 2-DOF controller types in PID Tuner. The
standard-form and discrete-time formulas are analogous. For more information about 2-

11-34

PID Controller Types for Tuning

DOF PID controllers generally, see “Two-Degree-of-Freedom PID Controllers” on page 2-

16.
Type |Controller Actions Continuous-Time Discrete-Time
Controller Formula Controller Formula
(parallel form) (parallel form,
ForwardEuler
integration method)
PI2 2-DOF proportional and
integral u = Kp(br-y) u = Kp(br - y)
Ki Ts
5 (r-y) + Ki—7(r-v)
PD2 2-DOF proportional and u = Kp(br - y) _ _
derivative + Kgs(cr — y) b = il —)
z—-1
+ Ky T, (cr—1y)
PDF2 |2-DOF proportional and _ _ _ _
derivative with first-order b= o =) b = I =)
filter on derivative term S
+ Kg=———(cr —
deS+]'(y) +Kd;7—.s(cr—y
Tf + 7-1
)
PID2 |2-DOF proportional,
integral, and derivative u = Kp(br-y) u = Ky(br-y)
i T,
1
+5(r=y) + Kig—7(r =)
+ Kgs(er — y) + Kdz,; 1 (cr—y)
S

11-35

11 riD Controller Design

Type |Controller Actions Continuous-Time Discrete-Time
Controller Formula Controller Formula
(parallel form) (parallel form,

ForwardEuler
integration method)

PIDF2 |2-DOF proportional,

integral, and derivative u = Kp(br —y) b = Il —)
with first-order filter on K;
derivative term +5(r=y) N K,’L(r -y
-1
S
tKapgzrier=v)
f 1
+ Ky T (cr—y
Tf z-1

2-DOF Controllers with Fixed Setpoint Weights

With PID control, step changes in the reference signal can cause spikes in the control
signal contributed by the proportional and derivative terms. By fixing the setpoint weights
of a 2-DOF controller, you can mitigate the influence on the control signal exerted by
changes in the reference signal. For example, consider the relationship between the
inputs r (setpoint) and y (feedback) and the output u (control signal) of a continuous-time
2-DOF PID controller.

K.
u = Kp(br—y)+ ?l(r - y) + Kgs(cr — y)

If you set b = 0 and ¢ = 0, then changes in the setpoint r do not feed through directly to
either the proportional or the derivative terms in u. The b = 0, ¢ = 0 controller is called
an I-PD type controller. I-PD controllers are also useful for improving disturbance
rejection.

Use PID Tuner to design the fixed-setpoint-weight controller types summarized in the
following table. The standard-form and discrete-time formulas are analogous.

PID Controller Types for Tuning

I-PD 2-DOF PID with b =
0,c=0 u= —-Kpy u= —-Kpy
K; T.
5 (r-y) +K,~Z_51(r—y)
dsy Kq T, y
I-PDF 2-DOF PIDF with b =
0,c=0 u= —-Kpy u= —-Kpy
K;
+—(r—
S0 +Kig (=)
s z-1
- Ky Ts y
f+z—1
ID-P 2-DOF PID with b =
0,c=1 us= —=Xpy u= —=&py
i T.
+5(r-y) +Kig=7(r-y)
+ Kqs(r -) ki -y
Ts

11-37

11 PiD Controller Design

11-38

IDF-P 2-DOF PIDF with b =
0,c=1 u= —-Kpy u= —-Kpy
K;
+—(r- T,
s +Kig (=)
s z—-1
+ Ky T
(r-vy
PI-D 2-DOF PID with b =
1,¢c=0 u=Kpr-y) u=Ky(r-y)
i T.
+5(r=y) + Kiz =7 (r =)
sy Kd Ts y
PI-DF 2-DOF PIDF with b =
1,¢c=0 u=Kpr-y) u=Ky(r-y)
+=l(r - T,
S(y) + K s (r-y)
s z—1
~ Kot vy)
_Kd Ts
Tf+z—1
See Also

pidTuner | pidtune

See Also

More About

“Designing PID Controllers with PID Tuner”
“Proportional-Integral-Derivative (PID) Controllers” on page 2-13
“Two-Degree-of-Freedom PID Controllers” on page 2-16

“PID Controller Design at the Command Line” on page 11-2

“PID Controller Design for Fast Reference Tracking”

“Tune 2-DOF PID Controller (Command Line)” on page 11-16
“Tune 2-DOF PID Controller (PID Tuner)” on page 11-22

11-39

11 riD controller Design

PID Controller Tuning in Simulink

Raf

Speed
Referance

11-40

This example shows how to automatically tune a PID Controller block using PID Tuner.
Introduction of the PID Tuner

PID Tuner provides a fast and widely applicable single-loop PID tuning method for the
Simulink® PID Controller blocks. With this method, you can tune PID controller
parameters to achieve a robust design with the desired response time.

A typical design workflow with the PID Tuner involves the following tasks:

(1) Launch the PID Tuner. When launching, the software automatically computes a linear
plant model from the Simulink model and designs an initial controller.

(2) Tune the controller in the PID Tuner by manually adjusting design criteria in two
design modes. The tuner computes PID parameters that robustly stabilize the system.

(3) Export the parameters of the designed controller back to the PID Controller block and
verify controller performance in Simulink.

Open the Model

Open the engine speed control model with PID Controller block and take a few moments
to explore it.

open_system('scdspeedctripidblock")

>
) Plis) . #| Throttle Ang. Combustion
" A charge | Air charge Engine
- Engine Speed, N Ar Charge | Air Charge radis Speed
| to rpm (rem}
R |
Throtle & Manitoid —— > Tena | Speed
Thaucaon o N N 300 P >
Power Stroke Delay |
Thoad

Load I Wehicle
Dynamics Speed

Drag Torque

Copyright 2004-2003 The MathWorks, Inc.

PID Controller Tuning in Simulink

Design Overview

In this example, you design a PI controller in an engine speed control loop. The goal of
the design is to track the reference signal from a Simulink step block
scdspeedctrlpidblock/Speed Reference. The design requirement are:

* Settling time under 5 seconds

* Zero steady-state error to the step reference input.

In this example, you stabilize the feedback loop and achieve good reference tracking
performance by designing the PI controller scdspeedctrl/PID Controller in the PID
Tuner.

Open PID Tuner

To launch the PID Tuner, double-click the PID Controller block to open its block dialog.
In the Main tab, click Tune.

Main | PID Advanced | Data Types | State Attributes

Controller parameters

Proportional (P): 1 = Compensator formula

Integral (I): 1

Tune... .

Initial PID Design

When the PID Tuner launches, the software computes a linearized plant model seen by
the controller. The software automatically identifies the plant input and output, and uses
the current operating point for the linearization. The plant can have any order and can
have time delays.

The PID Tuner computes an initial PI controller to achieve a reasonable tradeoff between
performance and robustness. By default, step reference tracking performance displays in
the plot.

The following figure shows the PID Tuner dialog with the initial design:

11-41

11 riD Controller Design

PID TUNER EEI “E‘.I_j £ % E 9 ﬁ

Plant: Type: PI Domain: & - @ - | » pers 2) E D
Plant = Form: Parallel Time - Slower Response Time (seconds) Faster
) L ! ! ! . y 5 % Reset Show Update
TErEr Options + Add Plot I t t t 1@ t { E .
= © opte = Aggressive Transient Behavior Robust Design Parameters Block =

PLANT CONTROLLER DESIGN TUNING TOOLS RESULTS

| Step Plot: Reference tracking |

Data Browvser

Step Plot: Reference tracking

14 T T T T
: : : : Tuned Response

Amplitude

15 2 25 3

Time (seconds)

Display PID Parameters

Click Show parameters to view controller parameters P and I, and a set of performance
and robustness measurements. In this example, the initial PI controller design gives a
settling time of 2 seconds, which meets the requirement.

11-42

PID Controller Tuning in Simulink

:»m‘:@ @

ponse Time (seconds) Faster
; i { E.ﬁ :l Reset Show
Transient Behavior Robust Design Parameters
=
 Controller parameters
Tuned Baseline
P 0.0042253
01 0.0092411
b
M
Performance and robustness
Tuned Baseline
= Rise time 0.45 seconds MaM seconds
Settling time 1.96 seconds MaM seconds
Owvershoot 7.5 % MaM %
- |Peak 1.08 Inf
Gain rmargin 254 dB @ 16.7 rad/s -199 dB @ 19 rad/s

Phase rnargin

59.9 deg @ 2.95 rad/s

-46.6 deg @ 60.3 rad/s

- |Closed-loop stability

Stable

Lndefined

Adjust PID Design in PID Tuner

The overshoot of the reference tracking response is about 7.5 percent. Since we still have
some room before reaching the settling time limit, you could reduce the overshoot by
increasing the response time. Move the response time slider to the left to increase the
closed loop response time. Notice that when you adjust response time, the response plot
and the controller parameters and performance measurements update.

The following figure shows an adjusted PID design with an overshoot of zero and a

settling time of 4 seconds. The designed controller effectively becomes an integral-only

controller.

11-43

11 riD Controller Design

11-44

PID Controller Tuning in Simulink

Controller parameters

Tuned Baseline
P il
I 00021263
)
M
Performance and robustness
Tuned Baseline
Rise time 2006 seconds MaM seconds
Settling time 345 seconds MaM seconds
Cwershoot 0401 % Mah %
Peak 1 Inf
Gain rargin 18.9 dB @ 3.27 rad/s -199 dB @ 19 rad/s

Phase margin

69.3 deg @ 0645 rad/s

-46.6 deg @ 60.3 rad/s

Closed-loop stability

Stable

LIndefined

Complete PID Design with Performance Trade-Off

In order to achieve zero overshoot while reducing the settling time below 2 seconds, you

need to take advantage of both sliders. You need to make control response faster to
reduce the settling time and increase the robustness to reduce the overshoot. For
example, you can reduce the response time from 3.4 to 1.5 seconds and increase

robustness from 0.6 to 0.72.

The following figure shows the closed-loop response with these settings:

11-45

11 riD Controller Design

Time

=

L

11-46

PID Controller Tuning in Simulink

Controller parameters

Tuned Baseline
P 00014551
I 00043791
)
M
Performance and robustness
Tuned Baseline
Rise time 1.09 seconds MaM seconds
Settling time 1.51 seconds MaM seconds
Cwershoot 0% Mah %
Peak 0.999 Inf
Gain rargin 32.8 dB @ 15 rad/s -199 dB @ 19 rad/s

Phase margin

72 deg @ 1.33 rad/s

-46.6 deg @ 60.3 rad/s

Closed-loop stability

Stable

LIndefined

Write Tuned Parameters to PID Controller Block

After you are happy with the controller performance on the linear plant model, you can
test the design on the nonlinear model. To do this, click Update Block in the PID Tuner.
This action writes the parameters back to the PID Controller block in the Simulink model.

The following figure shows the updated PID Controller block dialog:

Main | PID Advanced | Data Types

Controller parameters

State Attributes

Proportional (F): 0.00145510935265297 =l Compensator formula

Integral (I): 0.00437914512223441

Pl

Tune... 8

11-47

11 riD Controller Design

Completed Design

The following figure shows the response of the closed-loop system:

) Engine Speed (rpm) (=13
GELLPL ARE BEH .

3500
3000
2500
2000

1500 L
0

Titme offzet: O

The response shows that the new controller meets all the design requirements.

You can also use the Control System Designer to design the PID Controller block, when
the PID Controller block belongs to a multi-loop design task. See the example “Single
Loop Feedback/Prefilter Compensator Design” (Simulink Control Design).

bdclose('scdspeedctripidblock"')

11-48

Design PID Controller Using Estimated Frequency Response

Design PID Controller Using Estimated Frequency
Response

This example shows how to design a PI controller using a frequency response estimated
from a Simulink model. This is an alternative PID design workflow when the linearized
plant model is invalid for PID design (for example, when the plant model has zero gain).

Open the Model
Open the engine control model and take a few moments to explore it.

mdl = 'scdenginectrlpidblock"';
open_system(mdl)

Engine Speed Control System

— cdgel@d N —»@
crank speed

valve timing (radisec)

throtile deg (yellow)

Y
#

mass(k) | Air Charge

Throttle Ang.

F Y o }
Spaed [degrees) mass(k+1)

Torgque ¥ Teng t
x
i N N - ——
trigger 0P nespeed |§|
Thoad

Throttle & Manifold - Combustion rad/s Engine
Compression - to rpm Speed
Vehicle {rpm)

Load Dynamics

Drrag Torgue

= l
.—>t+ — >
- P I rotiie Angle Profies
FID >

Engine Speed, Nmass(k+1)

Y

Copyright 1990-2010 MathWorks, Inc.

The PID loop includes a PI controller in parallel form that manipulates the throttle angle
to control the engine speed. The PI controller has default gains that makes the closed
loop system oscillate. We want to design the controller using the PID Tuner that is
launched from the PID block dialog.

open_system([mdl '/Engine Speed (rpm)'])
sim(mdl)

11-49

11 riD controller Design

11-50

(4] o || =[] ER
File Tools View Simulation Help u

- 4P| - A& FH-

g " |' i) .' '|I I||,I

"'|'I|"|I"III' Ilf'I,II..lI,.l II ',II

1] \ \f II| ||||I '|| (] \ ||I|I || Illll l” I'II '. I| ||II| |

Ready Sample bazed T=10.000

Close the scope.
close system([mdl '/Engine Speed (rpm)'])
PID Tuner Obtaining a Plant Model with Zero Gain From Linearization

In this example, the plant seen by the PID block is from throttle angle to engine speed.
Linearization input and output points are already defined at the PID block output and the
engine speed measurement respectively. Linearization at the initial operating point gives
a plant model with zero gain.

To verify the zero linearization, first obtain the linearization input and output points from
the model.

= getlinio(mdl);
Then, linearize the plant at its initial operating point.

linsys = linearize(mdl,1io)

linsys

Design PID Controller Using Estimated Frequency Response

D —
Throttle Ang
EngineSpeed 0

Static gain.

The reason for obtaining zero gain is that there is a triggered subsystem (Compression) in
the linearization path and the analytical block-by-block linearization does not support
event-based subsystems. Since PID Tuner uses the same approach to obtain a linear
plant model, *PID Tuner also obtains a plant model with zero gain and rejects it during
the launching process.

To launch the PID Tuner, open the PID block dialog, and click Tune. An information
dialog opens and indicates that the plant model linearized at the initial operating point
has zero gain and cannot be used to design a PID controller.

11-51

11 riD Controller Design

HE LBk

Time (seconds)

PID TUNER
Plant: Type: FI Domain: & | : { » D S) E D
Plant + Form: Parallel Time i Slower Response Time (seconds) Faster
) L ! ! ! L | 0.6 % Reset Show Update
Inspect Options « Add Plot — T T — X T 1 - .
= © = Aggressive Transient Behavior Robust Design Parameters Block =
PLANT CONTROLLER DESIGN TUNING TOOLS RESULTS
S - | Step Plot: Reference tracking |
54U . Plant cannot be linearized. X
[==]
= Use the Plant menu to create or select a new plant.
=
[
i T T T T T T T
E E Tuned Response
| S S I—— R -
0] o o -
S s -
(1) Ryt RSy yE Ry Ry Sy S et PP -
: |
b= '
= -
g :
S L EL TP L P T PP LR P LR R P T TEP P EET P LR ORE e -
e S S -
e o o -
| S s -
E | | | | i | i | |
0 0.0z 0.04 0.06 0.08 0.1 0.12 0.14 0.18 0.18 0.2

An alternative way to obtain a linear plant model is to directly estimate the frequency
response data from the Simulink model, create an frd system in the MATLAB workspace,
and import it back to PID Tuner to continue PID design.

Obtain Estimated Frequency Response Data Using Sinestream Signals

The sinestream input signal is the most reliable input signal for estimating an accurate

frequency response of a Simulink model using the frestimate function. For more

information on how to use frestimate, see “Frequency Response Estimation Using
Simulation-Based Techniques” (Simulink Control Design).

11-52

Design PID Controller Using Estimated Frequency Response

Phase (deq)

Magnitude (dB)

In this example, create a sine stream that sweeps frequency from 0.1 to 10 rad/sec with
an amplitude of 1e-3. You can inspect the estimation results using the bode plot.

Construct the sinestream signal.

in = frest.Sinestream('Frequency',logspace(-1,1,50), 'Amplitude’,le-3);

Estimate the frequency response. This process can take a few minutes.

sys = frestimate(mdl,io,in);

Display the estimated frequency response.

bode(sys)

Bode Diagram

From: Throttle Angle Profiles degrees) To: EngineSpeed

—

N

o

10° 10’
Frequency (rad/s)

11-53

11 riD controller Design

Design PI Controller

sys is an frd system that represents the plant frequency response at the initial operating
point. To use it in PID Tuner, we need to import it after PID Tuner is launched. Click
Plant, and select Import.

[

Flant: Type: FI Comairn: &«
Plant = Form: Parallel Time - Slow
EXISTING PLANTS
Plant 2

CREATE A NEW PLANT

Import
I_Ji'—l Import a linear FEw

plant from Workspace

Cimts D esisae

Re-linearize Closed loop
‘bi Re-linearize model at an operating point found
based on the closed loop response of the model

Identify NewPlamnt - }----.

@, Generate a linear plant

from input/output data

11-54

Design PID Controller Using Estimated Frequency Response

Obtain plant model by

& Linearizing the Simulink model at the default operating point.
O Importing an LTI system or linearizing at an operating point defined in MATLAB Workspace:

Avvailable Data Type Order

SYs frd Mal

Specify the number of unstable poles [except integrators) for the selected plant: |0 |

@ Refresh Workspace view 19 oK 83 Cancel @ Help

Click Importing an LTI system, and in the list, select sys. Then, click "OK" to import the
frd system into PID Tuner. The automated design returns a stabilizing controller. Click
Add Plot, and select Open-Loop Bode plot. The plot shows reasonable gain and phase
margin. Click Show Parameters to see the gain and phase margin values. Time domain
response plots are not available for frd plant models.

11-55

11 riD Controller Design

Tuned Response Plant
Tuned Responze,gys

=0.007847

0.00331,

Controller Parameters: P

11-56

Design PID Controller Using Estimated Frequency Response

Response Time (seconds)
| Eod Controller Parameters
Tuned Block
P 0.0033101
£l 0.0078472
oD
L
-i-—___i__ Performance and Robustness
i i Tuned Block
.1 |Risetime MaM seconds 0 seconds
E E Settling time MaM seconds 0 seconds
_E _: Overshoot MaM % Inf %
U |Peak NaN 0
1| |Gain margin 183dB @103 rad/s (Inf dB @ NaN rad/s
= |Phase margin 60 deg @ 2.91 rad/s Inf deg @ MaM rad/s
== [Closed-loop stability |Unstable Stable

To update the PID block P and I gains, click Update Block.

Simulate Closed-Loop Performance in Simulink Model

Simulation in Simulink shows that the new PI controller provides good performance when

controlling the nonlinear model.

11 riD Controller Design

—iax]
SH|LLL AEEB DA F -

EngineSpeed

Time offzet. 0

Close the model.

bdclose(mdl)

11-58

Design Family of PID Controllers for Multiple Operating Points

Design Family of PID Controllers for Multiple Operating
Points

This example shows how to design an array of PID controllers for a nonlinear plant in
Simulink that operates over a wide range of operating points.

Open Plant Model

The plant is a continuous stirred tank reactor (CSTR) that operates over a wide range of
operating points. A single PID controller can effectively use the coolant temperature to
regulate the output concentration around a small operating range that the PID controller
is designed for. However, since the plant is a strongly nonlinear system, control
performance degrades if operating point changes significantly. The closed-loop system
can even become unstable.

Open the CSTR plant model.

mdl = 'scdcstrctriplant’;
open_system(mdl)

11-59

11 riD controller Design

Continuous Stirred Tank Reactor (CSTR)

k4

298.15

Feed Temperature

L1} P 0.3 |
Coolant Temperature / |+
VAV RhoCp) p 1 _/_
5

¥

\ ‘ Reactor Temperature
| 1 3

R |

kD
DeltaH/RhoCp

L i

:

-5563.6

h 4

-DeltaE/R

Fiv 2

-
*

m |-

7 o

DOutput Concentration

Yy
+

” o
I/

Feed Concentration Reactor Concentration

Copyright 2004-2010 MathWaorks, Inc.

For more information on this system, see [1].
Introduction to Gain Scheduling

A common approach to solve the nonlinear control problem is using gain scheduling with
linear controllers. Generally speaking, designing a gain scheduling control system takes

four steps:

1 Obtain a plant model for each operating region. The usual practice is to linearize the
plant at several equilibrium operating points.

11-60

Design Family of PID Controllers for Multiple Operating Points

2 Design a family of linear controllers, such as PID controllers, for the plant models
obtained in the previous step.

3 Implement a scheduling mechanism such that the controller coefficients, such as PID
gains, are changed based on the values of the scheduling variables. Smooth
(bumpless) transfer between controllers is required to minimize disturbance to plant
operation.

4 Assess control performance with simulation.
For more information on gain scheduling, see [2].

This example focuses on designing a family of PID controllers for the nonlinear CSTR
plant.

Obtain Linear Plant Models for Multiple Operating Points

The output concentration C is used to identify different operating regions. The CSTR plant
can operate at any conversion rate between a low conversion rate (C = 9) and a high
conversion rate (C = 2). In this example, divide the operating range into eight regions
represented by C = 2 through 9.

Specify the operating regions.

C=1[234567 8 9],

Create an array of default operating point specifications.
op = operspec(mdl,numel(C));

Initialize the operating point specifications by specifying that the output concentration is
a known value, and specifying the output concentration value.

for ct = 1:numel(C)
op(ct).Outputs.Known = true;
C

op(ct).Outputs.y = C(ct);
end

Compute the equilibrium operating points corresponding to the values of C.
opoint = findop(mdl,op, findopOptions('DisplayReport','off'));
Linearize the plant at these operating points.

Plants = linearize(mdl,opoint);

11-61

11 riD Controller Design

11-62

Since the CSTR plant is nonlinear, the linear models display different characteristics. For
example, plant models with high and low conversion rates are stable, while the others are
not.

isstable(Plants, 'elem')"

ans =
1x8 logical array

1 1 0 0 0 0 1 1

Design PID Controllers for the Plant Models

To design multiple PID controllers in batch, use the pidtune function. The following
command generates an array of PID controllers in parallel form. The desired open-loop
crossover frequency is at 1 rad/sec and the phase margin is the default value of 60
degrees.

Controllers = pidtune(Plants, 'pidf',pidtuneOptions('Crossover',1));

Display the controller for C = 4.

Controllers(:,:,4)

with Kp = -12.4, Ki = -1.74, Kd = -16, Tf = 0.00875
Continuous-time PIDF controller in parallel form.

To analyze the closed-loop responses for step setpoint tracking, first construct the closed-
loop systems.

clsys = feedback(Plants*Controllers,1);

Plot closed-loop responses

Design Family of PID Controllers for Multiple Operating Points

Amplitude

figure

hold on

for ct = 1:length(C)
% Select a system from the LTI array
sys = clsys(:,:,ct);
sys.Name = ['C=",num2str(C(ct))];
sys.InputName = 'Reference’;
% Plot step response
stepplot(sys,20);

end

legend('show', 'location', 'southeast')

Step Response

18 From: Reference Teo: Output Concentration

-\‘-"‘"\—h__‘___._.—-—-—'_'_'_._._'
c=2| |
c=3
C=4| 1
C=5
C=6| 1
c=7
=8|
c=8

9
0 2 4 6 8 0 12 14 16 18

Time (seconds)

20

11-63

11 riD controller Design

All the closed loops are stable, but the overshoots of the loops with unstable plants (C =
4, through 7) are too large. To improve the results, increase the target open-loop
bandwidth to 10 rad/sec.

Design updated controllers for the unstable plant models.

Controllers = pidtune(Plants, 'pidf',10);

Display the controller for C = 4.

Controllers(:,:,4)

ans =

1 S
Kp + Ki * --- + Kd * --------
s Tf*s+1

with Kp = -283, Ki = -151, Kd = -128, Tf = 0.0183

Continuous-time PIDF controller in parallel form.

Construct the closed-loop systems, and plot the closed-loop step responses for the new
controllers.

clsys = feedback(Plants*Controllers,1);

figure

hold on

for ct = 1:length(C)
% Select a system from the LTI array
sys = clsys(:,:,ct);
set(sys, 'Name',['C="',num2str(C(ct))], 'InputName', 'Reference');
% Plot step response
stepplot(sys,20);

end

legend('show', 'location', 'southeast')

11-64

Design Family of PID Controllers for Multiple Operating Points

=
s

Amplitude

=
I

0.2

Step Response

From: Reference To: Cutput Concentration

=
fas

N\

W o~ 3 B W b

OO0 000

Time (seconds)

All the closed-loop responses are now satisfactory. For comparison, examine the response
when you use the same controller at all operating points. Create another set of closed-

loop systems, where each one uses the C = 2 controller, and plot their responses.

clsys flat

figure

stepplot(clsys,clsys flat,20)
legend('C-dependent Controllers','Single Controller')

feedback(Plants*Controllers(:,:,1),1);

11-65

11 riD controller Design

Amplitude

11-66

Step Response
From: In(1) To: OQutput Concentration

C-dependent Controllers
Single Controller |
B 8 10 12 14 16 18 20

Time (seconds)
The array of PID controllers designed separately for each concentration gives
considerably better performance than a single controller.

However, the closed-loop responses shown above are computed based on linear
approximations of the full nonlinear system. To validate the design, implement the
scheduling mechanism in your model using the PID Controller block.

Close the model.

bdclose(mdl)

Design Family of PID Controllers for Multiple Operating Points

References

[1] Seborg, D. E., T. E Edgar, and D. A. Mellichamp. Process Dynamics and Control, 2nd
Ed., Wiley, 2004, pp. 34-36.

[2] Rugh, W.]., and J. S. Shamma. "Research on gain scheduling." Automatica, Issue 36,
2000, pp. 1401-1425.

11-67

11 riD Controller Design

Design PID Controller Using Simulated 1/0 Data

11-68

This example shows how to tune a PID controller for plants that cannot be linearized. You
use PID Tuner to identify a plant for your model. Then tune the PID controller using the
identified plant.

This example uses a buck converter model that requires Simscape™ Electrical™ software.

Buck Converter Model

Buck converters convert DC to DC. This model uses a switching power supply to convert a
30V DC supply into a regulated DC supply. The converter is modeled using MOSFETs
rather than ideal switches to ensure that device on-resistances are correctly represented.
The converter response from reference voltage to measured voltage includes the
MOSFET switches. PID design requires a linear model of the system from the reference
voltage to the measured voltage. However, because of the switches, automated
linearization results in a zero system. In this example, using PID Tuner, you identify a
linear model of the system using simulation instead of linearization.

For more information on creating a buck converter model, see “Buck Converter”
(Simscape Electrical).

open_system('scdbuckconverter')
sim('scdbuckconverter')

Design PID Controller Using Simulated 1/0 Data

Currant
SENs0r

- a YTy a
N-Channel L
MOSFETH) .

M-Channal
MOSFETI2

- '
o1 Smoothing L
¢ capacitor, & T

_ -

‘oltage
Sensor

: =||f[=-c]={l

¥

 {PwML
 IPWMH .

Feedback controller Refaranca
Woltage

Caopyright 2013 The Math\Works, Inc.

-

Cutput voltage

Control signal

- Cyclic load current
-—hi supph
Supply current

(

Scope 1

Scope 2

The model is configured with a reference voltage that switches from 15 to 25 Volts at

0.004 seconds and a load current that is active from 0.0025 to 0.005 seconds. The

controller is initialized with default gains and results in overshoot and slow settling time.

open_system('scdbuckconverter/Scope 1'")
open_system('scdbuckconverter/Scope 2')

11-69

11 riD controller Design

—

4 = |l= =]
File Tools View Simulation Help o
@- BOP® =-a&A- 0 FH-

Output voltage

Control signal

Ready Sample bazed T=0.008

11-70

Design PID Controller Using Simulated 1/0 Data

[

File Tools View Simulation
- GOP® - AQ-E-F&A-
Cyclic load current

Ready

Help

Supply current

IENER PN

|

Sample based T=0.006

Simulate Model to Generate I/O Data

To open the PID Tuner, in the Feedback controller subsystem, open the PID Controller
block dialog, and click Tune. PID Tuner indicates that the model cannot be linearized

and returned a zero system.

11-71

11 riD Controller Design

PID TUNER VEW 2N 2
Plant: . Domain: >
Type: PIDF ; « | : : i » [z 5 @ E |>
Plant « Form: Parallel Time - Shower Response Time (seconds) Faster
| ; ; ; ; ; Reset
@ i Add Plot f f f t @ } { 06 - Show Update
(inspect @ Options kd T et fotust Design Parameters Block v
PLANT CONTROLLER DESIGN TUNING TOOLS RESULTS A
3 - | StepPlot Reference tracking |
é O[Plant cannot be linearized.
= Use the Plant menu to create or select a new plant.
a 1 T T T T T T T T T
Tuned response
= = =Block response
05 m
@
=]
=
5 0
=
<
05 m
A | | | | | | | | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time (seconds) <1074
/44 Sample time is small relative to the response time. Response plot is truncated because there are too many data peints. Controller Parameters: P = 0, 1= -2e+05, D= 0, N=100

PID Tuner provides several alternatives when linearization fails. In the Plant drop-down

list, you can select one of the following methods:

times.

Import - Import a linear model from the MATLAB workspace.
Re-linearize Closed Loop - Linearize the model at different simulation snapshot

Identify New Plant - Identify a plant model using measured data.

For this example, click Identify New Plant to open the Plant Identification tool.

11-72

Design PID Controller Using Simulated 1/0 Data

—

PID TUMER
Plant: Damain: «
Flant « Type: FIDF Time - Sle

[F3

EXISTING PLAMTS

o Plant

CREATE A NEW PLANT

Import
|£L| Import a linear er

plant from Waorkspace

Clods Desnsae

Re-linearize Closed loop
ﬁ Re-linearize model at an operating point found
based on the closed loop response of the model

Identify New Plant
@, Generate a linear plant
from input/output data

To open a tool that simulates the model to collect data for plant identification, on the
Plant Identification tab, click Get I/O Data > Simulate Data.

11-73

11 riD controller Design

11-74

PID TUNER PLANT IDENTIFICATION l
EII]:I [ty

Get 'O Data Preprocess

Structures One Pole

|~ - n n r

Simulate Data
Obtain 'O data by
simulating the Simulink model

IMPORT I/'O DATA

S5tep Response

: Import plant response

Ly from step [bump]} test

Import plant response from
narrow pulse (impact) test

r Impulse Response

:_I_ Wide Pulse Response
i Import plant response for a pulse of
PR r—— arbitrary rising and falling amplitudes

s5e

Arbitrary IO Data

L o 111
/rUJLI' Eﬂ Import plant response for

Lo, an arbitrary input signal

On the Simulate I/O Data tab, you simulate the plant seen by the controller. The
software temporarily:

* Removes the PID Controller block from the model.
* Injects a signal where the output of the PID block used to be.
* Measures the resulting signal where the input to the PID block used to be.

This data describes the response of the plant seen by the controller. The PID Tuner uses
this response data to estimate a linear plant model.

Configure the input signal as a step input with the following properties:

Design PID Controller Using Simulated 1/0 Data

* Sample Time (A1) = 5e-6 - Controller sample rate.

* Offset (1) = 0.51 - Output offset value that puts the converter in a state where the
output voltage is near 15V and gives the operating point around which to tune the
controller.

Onset Time (T1) = 0.003 - Delay to allow sufficient time for the converter to reach
the 15V steady state before applying the step change.

* Step Amplitude () = 0.4 - Step size of the controller output (plant input) to apply to
the model. This value is added to the offset value "u so that the actual plant input
steps from 0.51 to 0.91. The controller output (plant input) is limited to the range
[0.01 0.95].

Input

F
L 4
=

Amplitude(a): 0.4 |

11-75

11 riD controller Design

PID TUNER. PLANT IDENTIFICATION SIMULATE VO DATA FIGURE VIEW (2) (2]
Sample Time (AT): |5e-06 Onset Lag (Ty): (0,003 E o M Show Input Response 4 8
Signal Type: Step =, M Show Offset Response
Offset (uy): [p, Stop Time (T,): g,
gk 0,51)| 0.006 ' cation Dt PP Close
INPUT SIGNAL | SIMULATION | VIEW | APFLY | CLOSE | =
g | Step Plot: Reference tracking 7 | | Plant |dentification |
£E= ' P - -
8\ ‘)| Specify u, the plant input. Simulate the model u
E to obtain e, the output of the plant seen by the
5 Step Plot: Reference trackin contrallecag l N
s 1 P 9 After simulation, click Apply & Close to return
to Plant ldentification.
Tuned response T
08 F = = =Block response 0.8 |
|
0.6 |
0.6 |
04
0.4 - |
0.2 r |
0.2 -
@®
@ = 0
2 E
Z 0 EL Input (u)
5 g 1
<
0.2 |
09 |
]
0.4
08 ‘
06" 0.7 - |
-0.8 0.6 :
|
-1 0.5
1] 0.2 0.4 0.6 0.8 1 1] 1 2 3 4 6
Time (seconds) 104 Time (seconds) 1073

_

Select Show Input Response, Show Offset Response, and Show Identification Data.

Then, click the Run Simulation. The Plant Identification plot is updated.

11-76

Design PID Controller Using Simulated 1/0 Data

PID TUNER PLANT IDENTIFICATION SIMULATE VO DATA FIGURE VEW @ @
Sample Time (AT): [5¢-05 | OnsetLag (Ty): 0,003) Show inputResponse @ | 572
Signal Type: E Step | 2 Show Offset Response
Offset (ug: (0,51 Stop Time (T,): | 0,008
‘0 U s Show dentiication Data 7P C19s®
INFUT SIBNAL SIMULATION VIEW AFFLY | CLOSE a
] | Step Plot: Reference tracking | J Plant ldentification 1
HIO] €
m
a Step Plot: Reference tracking 1 Output (e)
1
Tuned respanse 10 - —-——--::-::777’ 1
= = =Block response \\/
0.8
5
0.6 o c~——
0.4 -5
Identification Data
A0 Offset Response
0.2 Input Response
©
©
3 2
£ 9 a |
a nput (u)
£ 51
<
0.2
0.9
0.4
0.8
0 0.7
0.8 0.6
-1 0.5
0 0.2 0.4 0.6 0.8 1 o 1 2 3 4 5 6
Time (seconds) <1074 Time (seconds) <1073

The red curve is the offset response. The offset response is the plant response to a
constant input of “u. The response shows that the model has some transients with a

constant input, in particular:

The [0 0.001] second range where the converter reaches the 15V steady state. Recall

that this signal is the control error signal and hence drops to zero as steady state is

reached.

The [0.0025 0.004] second range where the converter reacts to the current load being

applied while the reference voltage is maintained at 15V.

The 0.004 second point where the reference voltage signal is changed from 15V to

25V resulting in a larger control error signal.

11-77

11 riD Controller Design

11-78

* The [0.005 0.006] second range where the converter reacts to the current load being
removed.

The blue curve shows the complete plant response that contains the contributions from
the initial transients (significant for times < 0.001 seconds), the response to the cyclic
current load (time durations 0.0025 to 0.005 seconds), reference voltage change (at 0.004
seconds), and response to the step test signal (applied at time 0.003 seconds). In contrast,
the red curve is the response to only the initial transients, reference voltage step, and
cyclic current load.

The green curve is the data that will be used for plant identification. This curve is the
change in response due to the step test signal, which is the difference between the blue
(input response) and red (offset response) curves taking into account the negative
feedback sign.

To use the measured data to identify a plant model, click Apply. Then, to return to plant
identification, click Close.

Plant Identification

PID Tuner identifies a plant model using the data generated by simulating the model.
You tune the identified plant parameters so that the identified plant response, when
provided the measured input, matches the measured output.

Design PID Controller Using Simulated 1/0 Data

PID TUNER VIEW Checkout || Catalog ,I.El () (A
Plant: Type: PIDF Diomain: L L L | yay
& t t i » |2 =
Plant = Form: Parallel Time - Shower Response Time (seconds) Faster @ E D
. I - - L L | | Reset Show Update
- F T T T T 1 0.6
L4 Inspect {© options @ LR e SereTriiTm o & ¥ Design Parameters Block «
PLANT | CONTROLLER | DESIGN | TUNING TOOLS | ResuLts | &
g | Step Plot: Reference tracking = | | Plant Identification |
gl \ EN) |
W Identified Plant Structure: One Pole
E Step Plot: Reference tracking 12 Output (e)
1
Identification Data
Tuned response Identified Plant
0.8 = = =Block response 0% T1 Adjustor
1
0.6
|
0.4 |
0.2
8 8 _
= = |
= = |
g £
< <t
0.2
0.4
-0.6
0.8
-1 -
] 0.2 0.4 0.6 0.8 1 3 3.5 4 4.5 5 5.5 6
Time (seconds) <1074 Time (seconds) <1073
Controller Parameters: P = 0, | = -2e+05, D= 0, N =100

You can manually adjust the estimated model. Click and drag the plant curve and pole
location (X) to adjust the identified plant response so that it matches the identification

data as closely as possible.

11-79

11 riD Controller Design

PID TUNER PLANT IDENTIFICATION FIGURE VIEW Checkout IE Catalog IE m

I:II:II:I E Structure: E‘ One Pole = K @ Qy
Get V0 Data Preprocess (Tys+1) Edit Auto Apply
- - [N Delay [Zero [Integrator Parameters Estimate =
INPUT/OUTPUT DATA PLANT STRUCTURE PLANT ESTIMATION APPLY x
g - | StepPlot Reference tracking | _J Plant |dentification 1
2= "
W Identified Plant Structure: One Pole
E Step Plot: Reference tracking Output (e)
"
. B e
' P Identified Plant
» T, Adjustor
0.6
0.4
0.2
@ €
2 2
= 0 =
=1
g &
=
0.2
0.4
0.6
0.8
- .
0 0.2 0.4 0.6 0.8 1 3 3.5 4 4.5 5 5.5 6
Time (seconds) <1074 Time (seconds) <1073
Plant Parameters: K = 29.587, TI = 0.0002176

To tune the identified plant using automated identification, click Auto Estimate. The
automated tuning response is not much better than the interactive tuning. The identified
plant and identification data do not match well. Change the plant structure to get a better
match:

* In the Structure drop-down list, select Underdamped pair.

* Click and drag the 2nd order envelope to match the identified data as closely as
possible (almost critically damped).

* Click Auto Estimate to fine tune the plant model.

11-80

Design PID Controller Using Simulated 1/0 Data

CHOOSE PLANT STRUCTURE

SS

nx

EXISTING PLANTS
L Plant

One Pole
Transfer function
with one real pole

Two Real Poles
Transfer function
with two real poles

Underdamped Pair
Transfer function with a
pair of complex-conjugate poles

Underdamped Pair + Real Pole
Transfer function with a real plus
a pair of complex-conjugate poles

State Space Model
State-space
model of chosen order

gt

H

11-81

11 riD Controller Design

PLANT IDENTIFICATION FIGURE VIEW @ @
EI‘]:' Z} Structure: E Underdamped Pair « K @ W
GetVOData Preprocess (TA2+2TT 51 Edit Auto Apply
- - [Delay M Zero [T Integrator Trworrm B
INFUTIOUTPUT DATA PLANT STRUCTURE PLANT ESTIMATION AFFLY B
g | Step Plot: Reference tracking | J Plant ldentification 1
g =
s W Identified Plant Structure: Underdamped Pair
z Step Plot: Reference trackin LI
= 1 P 9 14 T Identification Data
A\ Identified Plant
Tuned response — — T +{ Adjustar
0.8 = = =Block response —
0.6
0.4
0.2
o 3
k= 2
= 0 =
g £
< <L
0.2
0.4
0.6
0.8
-1
0 0.2 0.4 0.6 0.8 4.5 5 55 6
Time (seconds) 104 Time (seconds) 1072
Plant Parameters: K = 29.266, Tm = 0.00015031, ¢ = 0.883

To designate the identified model as the current plant for controller tuning, Click Apply.
PID Tuner then automatically tunes a controller for the identified plant and updates the

Reference Tracking step plot.

Controller Tuning

The PID Tuner automatically tunes a PID controller for the identified plant. The tuned
controller response has about 5% overshoot and a settling time of around 6 seconds. Click
the Reference Tracking step plot to make it the current figure.

11-82

Design PID Controller Using Simulated 1/0 Data

€] Checkout (2] Catabg (] Fie (2) 2]

PID TUNER PLANT IDENTIFICATION FIGURE VEW
':I‘]:' E Structure: E Underdamped Fair + K @ Qy
GellOData Preprocess (TE2+2TTsHL) Edit oo Al
- = M Delay M Zero [integrator e e
INFUT/OUTPUT DATA FLANT STRUCTURE PLANT ESTIMATION AFFLY -
g | Step Plot: Reference tracking | _J Plant Identification 1
o
2 Identified Plant Structure: Underdamped Pair
g Step Plot: Reference tracking 14 Output (e)
16 Identification Data
‘r Tuned response,Plant1 Identified Plant
: Block response,Plant1 — — T+ Adjustor
14
| -
I
1210 4 |
| | bh
1o b
1
| -
1] i P — E—
P v - ©
« . h=]
s ‘ E =
F08F i [=%
£ I ! z
<] J
06 | :
f
|
0.4 !
0.2 N
0
0.2 0.4 0.6 0.8 1 1.2 4 45 5 6.5 6
Time (seconds) <1072 Time (seconds) 103
Plant Parameters: K = 29.266, T = 0.00015031, { = 0.883

The controller output is the duty cycle for the PWM system and must be limited to [0.01
0.95]. To confirm that the controller output satisfies these bounds, create a controller
effort plot. On the PID Tuner tab, in the Add Plot drop-down list, under Step, click
Controller effort. Move the newly created Controller effort plot to the second plot

group.

11-83

11 riD controller Design

Plant

Open-loop

Reference tracking
Controller effort

Input disturbance rejection

Output disturbance rejection

BODE

Plant

Cpen-loop
Reference tracking
Controller effort

Input disturbance rejection

Cutput disturbance rejection

In the Controller effort plot, the tuned response (solid line) shows a large control effort
required at the start of the simulation. To achieve a settling time of about 4 seconds and
overshoot of 9%, adjust the Response Time and Transient Behavior sliders. These
adjustments reduce the maximum control effort to the acceptable range.

11-84

Design PID Controller Using Simulated 1/0O Data

PID TUNER VEW (2) (2]
Plant: Type: PIOF Domain: I ’ ’ ’ J a
8 & F T T T 1 % |.0001591| O
Plantl Form: Parallel |Time - Siower Response Time (seconds) Faster @ E D
i Add Plot v l t t +—@—t t { 052 |4 Resst Show Update
({ Inspect @ optons kil Aggressive Transient Beharior Robust Design Parameters Block
PLANT | GONTROLLER | DESIGN | TUNING TOOLS | ResuLTs | =
g | Step Plot: Reference tracking 7 | ‘ Plant Identification VJ Step Plot: Controller effort 1
:
-1
= Step Plot: Reference tracking Step Plot: Controller effort
1.6 1 T T T T T
|r\ Tuned response Plant1 II Tuned respanse, Plant1
1.4 1y Block response Plant1 0.8 = = =Block response Plant1
[1
| 1
1
121 - 0.6 8
(. M 1
)b]
- [
1 1 o Iy p— - 0.4 [; _
f f N - [
@ | ; o] ['
- b=l ¥
2 I LIl 4 2 I st
Zoafy {1 Sk 4 . 1
= | Vot E 1 Y
< 11 < h L d o Pl
0.6 v ofFt+ T, I =]
[}
['] y 7
| | 3 ,’
0.4 11 02 g
I r
I L
02 04t 1
| 1
" s
0 L I L L L 06 L . L L L
0 0.2 0.4 0.6 0.8 1 1.2 o 0.2 0.4 0.6 0.8 1 1.2
Time (seconds) 1073 Time (seconds) <102

Controller Parameters: P = 01263, | = 529.8, D = 5.446e-06, N = 4.114e+04

To update the Simulink block with the tuned controller values, click Update Block.

To confirm the PID controller performance, simulate the Simulink model.

11-85

11 riD Controller Design

File Tocols View Simulation Help
G- BOP® - Q- C- F&-
Output voltage

Control signal

Sample based |(T=0.008

bdclose('scdbuckconverter')

11-86

Classical Control Design

“Choosing a Control Design Approach” on page 12-2

“Control System Designer Tuning Methods” on page 12-4

“Design Requirements” on page 12-9

“Feedback Control Architectures” on page 12-21

“Design Multiloop Control System” on page 12-24

“Multimodel Control Design” on page 12-35

“Bode Diagram Design” on page 12-49

“Root Locus Design” on page 12-64

“Nichols Plot Design” on page 12-80

“Edit Compensator Dynamics” on page 12-93

“Design Compensator Using Automated Tuning Methods” on page 12-100
“Analyze Designs Using Response Plots” on page 12-116

“Compare Performance of Multiple Designs” on page 12-126

“Design Hard-Disk Read/Write Head Controller” on page 12-132

“Design Compensator for Plant Model with Time Delays” on page 12-146

“Design Compensator for Systems Represented by Frequency Response Data”
on page 12-154

“Design Internal Model Controller for Chemical Reactor Plant” on page 12-160
“Design LQG Tracker Using Control System Designer” on page 12-175

“Export Design to MATLAB Workspace” on page 12-187

“Generate Simulink Model for Control Architecture” on page 12-190

“Tune Simulink Blocks Using Compensator Editor” on page 12-192

“Single Loop Feedback/Prefilter Compensator Design” on page 12-200
“Cascaded Multiloop Feedback Design” on page 12-210

“Reference Tracking of DC Motor with Parameter Variations” on page 12-221

12 Cciassical Control Design

Choosing a Control Design Approach

12-2

Control System Toolbox provides several approaches to tuning control systems. Use the
following table to determine which approach best supports what you want to do.

PID Tuning

Classical Control
Design

Multiloop,
Multiobjective
Tuning

Architecture

PID loops with unit
feedback (1-DOF and
2-DOF)

Control systems
having SISO
controllers in
common single-loop
or multiloop
configurations (see
“Feedback Control
Architectures” on
page 12-21)

Any architecture,
including any
number of SISO or
MIMO feedback
loops

Control Design
Approach

Automatically tune
PID gains to balance
performance and
robustness

Graphically tune
poles and zeros
on design plots,
such as Bode,
root locus, and
Nichols

* Automatically
tune
compensators
using response
optimization
(Simulink Design
Optimization™),
LQG synthesis, or
IMC tuning

Automatically tune
controller
parameters to meet
design requirements
you specify, such as
setpoint tracking,
stability margins,
disturbance
rejection, and loop
shaping (see “Tuning
Goals”)

Analysis of Control
System
Performance

Time and frequency
responses for
reference tracking
and disturbance
rejection

Any combination of
system responses

Any combination of
system responses

See Also

PID Tuning Classical Control Multiloop,
Design Multiobjective
Tuning

Interface * Graphical tuning |Graphical tuning * Graphical tuning
using PID Tuner |using Control using Control
(see “Designing |System Designer System Tuner
PID Controllers" « Programmatic
with PID Tuner”) tuning using

* Programmatic systune (see

tuning using “Programmatic
pidtune (see Tuning”)
“PID Controller
Design at the
Command Line”
on page 11-2)

See Also

More About

. “PID Controller Tuning”

. “Classical Control Design”

. “Tuning with Control System Tuner”

. “Programmatic Tuning”

12-3

12 Cciassical Control Design

Control System Designer Tuning Methods

12-4

Using Control System Designer, you can tune compensators using various graphical
and automated tuning methods.

Graphical Tuning Methods

Use graphical tuning methods to interactively add, modify, and remove controller poles,

zeros, and gains.

Tuning Method

Description

Useful For

Bode Editor

Tune your compensator to achieve
a specific open-loop frequency
response (loop shaping).

Adjusting open-loop bandwidth
and designing to gain and phase
margin specifications.

Closed-Loop
Bode Editor

Tune your prefilter to improve
closed-loop system response.

Improving reference tracking,
input disturbance rejection, and
noise rejection.

Root Locus
Editor

Tune your compensator to produce
closed-loop pole locations that
satisfy your design specifications.

Designing to time-domain design
specifications, such as maximum
overshoot and settling time.

Nichols Editor

Tune your compensator to achieve
a specific open-loop response (loop
shaping), combining gain and
phase information on a Nichols
plot.

Adjusting open-loop bandwidth
and designing to gain and phase
margin specifications.

When using graphical tuning, you can modify the compensator either directly from the
editor plots or using the compensator editor. A common design approach is to roughly
tune your compensator using the editor plots, and then use the compensator editor to
fine-tune the compensator parameters. For more information, see “Edit Compensator
Dynamics” on page 12-93

The graphical tuning methods are not mutually exclusive. For example, you can tune your
compensator using both the Bode editor and root locus editor simultaneously. This option
is useful when designing to both time-domain and frequency-domain specifications.

For examples of graphical tuning, see the following:

Control System Designer Tuning Methods

* “Bode Diagram Design” on page 12-49
* “Root Locus Design” on page 12-64
* “Nichols Plot Design” on page 12-80

Automated Tuning Methods

Use automated tuning methods to automatically tune compensators based on your design
specifications.

Tuning Method |Description Requirements and Limitations

PID Tuning Automatically tune PID gains to Classical PID tuning formulas
balance performance and require a stable or integrating
robustness or tune controllers effective plant.
using classical PID tuning
formulas.

Optimization Optimize compensator parameters |Requires Simulink Design

Based Tuning |using design requirements Optimization software.
specified in graphical tuning and
analysis plots. Tunes the parameters of a

previously defined controller
structure.

LQG Synthesis |Design a full-order stabilizing Maximum controller order
feedback controller as a linear- depends on the effective plant
quadratic-Gaussian (LQG) tracker. |dynamics.

Loop Shaping |Find a full-order stabilizing Requires Robust Control Toolbox
feedback controller with a software.
specified open-loop bandwidth or
shape. Maximum controller order

depends on the effective plant
dynamics.

12-5

12 ciassical Control Design

12-6

Tuning Method |Description Requirements and Limitations
Internal Model |Obtain a full-order stabilizing Assumes that your control system
Control (IMC) |feedback controller using the IMC |uses an IMC architecture that
Tuning design method. contains a predictive model of

your plant dynamics.

Maximum controller order
depends on the effective plant

dynamics.

A common design approach is to generate an initial compensator using PID tuning, LQG
synthesis, loop shaping, or IMC tuning. You can then improve the compensator
performance using either optimization-based tuning or graphical tuning.

For more information on automated tuning methods, see “Design Compensator Using
Automated Tuning Methods” on page 12-100.

Effective Plant for Tuning

An effective plant is the system controlled by a compensator that contains all elements of
the open loop in your model other than the compensator you are tuning. The following
diagrams show examples of effective plants:

Effective phant Effective plant containin
:url[l'rig1ph|; ploni o plant, o contraller, urlﬂl]
ond o loop twao feedhack loops

Knowing the properties of the effective plant seen by your compensator can help you
understand which tuning methods work for your system. For example, some automated

A
tuning methods apply only to compensators whose open loops (L = CP) have stable

Control System Designer Tuning Methods

A
effective plants (P). Also, for tuning methods such as IMC and loop shaping, the maximum
controller order depends on the dynamics of the effective plant.

Select a Tuning Method

To select a tuning method, in Control System Designer, click Tuning Methods.

_‘n Control System Designer - IOTransfer_r2y: step

[CONTROL SYSTEM VIEW

o e =

Open Save Edit Multimodel
. . o .
FILE | ARCHITECTURE
Data Browser @ =y br LoopTransfer C 1 |
X — F | Bode Editor . B E—
&7 il Eeent et Hrd s L ___3\9' Edit feedback loop using Bode plot Editor for LoopTransfer_C
F 3 T
3
c E :"(\9\,_ Closed-Loop Bode Editor
G g 3\9' Edit closed loop using Bode plot
H ;, 1 ﬁ Root Locus Editor
g - 7 Edit compensators using root locus plot E—
- -1
w Designs 5 7@ Nichols Editor
3 T Edit feedback loop using Michals plot
o
g AUTOMATED TUNING
- 1 p|D | P Tuning 6 4 2 0 2
Tune FID compensator using robust response time or classical methods Real Axis
j_ e Optimization Based Tuning
w Responses M |: Ex Optimize compensator parameters to satisfy design requirements
LoopTransfer_C - LQG Synthesi @ @ @ E
— T ynthesis
[OTransfer_r2y fz Qzdt Obtain feedback compensator using Linear-Quadratic-Gaussian design |, ...
I0Transfer_r2u =
I0Transfer_duy B \\ Loop Shaping 8
10Transfer_dy2y il Find feedback compensator to match specified open-loop shape
» Preview IMC Internal Model Control IMC) Tuning 7
Obtain feedback compensator using IMC design
0.01 7
0 | |
0 05 1 15

12-7

12 Cciassical Control Design

See Also

Control System Designer

Related Examples

. “Bode Diagram Design” on page 12-49

. “Root Locus Design” on page 12-64

. “Nichols Plot Design” on page 12-80

. “Design Compensator Using Automated Tuning Methods” on page 12-100

12-8

Design Requirements

Design Requirements

Imag Axis

n

=

This topic describes time-domain and frequency-domain design requirements available in
Control System Designer. Each requirement defines an exclusion region, indicated by a
yellow shaded area. To satisfy a requirement, a response plot must remain outside of the
associated exclusion region.

Root Locus Editor for LoopTransfer_C

=

8 6 -4 -2
Real Axis

=
[

12-9

12 Cciassical Control Design

12-10

If you have Simulink Design Optimization software installed, you can use response
optimization techniques to find a compensator that meets your specified design
requirements. For examples of optimization-based control design using design
requirements, see “Optimize LTI System to Meet Frequency-Domain Requirements”
(Simulink Design Optimization) and “Design Optimization-Based PID Controller for
Linearized Simulink Model (GUI)” (Simulink Design Optimization).

For other Control System Designer tuning methods, you can use the specified design
requirements as visual guidelines during the tuning process.

Add Design Requirements

You can add design requirements either directly to existing plots or, when using
optimization-based tuning, from the Response Optimization dialog box.

Add Requirements to Existing Plots
You can add design requirements directly to existing:

* Bode, root locus, and Nichols editor plots.
* Analysis plots:

* Root locus plots and pole/zero maps
* Bode diagrams

* Nichols plots

* Step and impulse responses

To add a design requirement to a plot, in Control System Designer, right-click the plot,
and select Design Requirements > New.

A\ New Design Requirerment E'@

Design requirernent type: Settling time -

e

Design requirerment pararmeters

Settling tirme < 1| seconds

| ok || Close || Help |

Design Requirements

In the New Design Requirement dialog box, in the Design requirement type drop-down
list, select the type of requirement to add. You can select any valid requirement for the
associated plot type.

In the Design requirement parameters section, configure the requirement properties.
Parameters are dependent on the type of requirement you select.

To create the specified requirement and add it to the plot, click OK.
Add Requirements from Response Optimization Dialog Box

When using optimization-based tuning, you can add design requirements from the
Response Optimization dialog box.

Response Optimization x

| Overview | Compensators | Design Requirements | Optimization

Select design requirement to satisfy

[T] Optimize Response plot | Design requirement
[l IOTransfer_r2y

& Step Respo Step response b 15 (seconds)

Click the "Add new design requirement” button or right click on a plot to add a new design regquiremnent
G Add new design requirement... D |

Start Optimization | | Help |

To do so, on the Design Requirements tab, click Add new design requirement.

12-11

12 Cciassical Control Design

i)

4\ Mew Design Requirernent E' (=] @
Design requirerment type: Damping ratio -
Requirernent for response: I0Transfer_rdy -

Design requirernent pararmeters

Darnping ratio = 07071

| 034 || Cancel || Helg |

In the New Design Requirement dialog box, select a Design requirement type from the
drop-down list.

In the Requirement for response drop-down list, specify the response to which to apply
the design requirement. You can select any response in Data Browser.

In the Design requirement parameters section, configure the requirement properties.
Parameters are dependent on the type of requirement you select.

To create the specified design requirement, click OK. In the Response Optimization dialog
box, on the Design Requirements tab, the new requirement is added to the table.

The app also adds the design requirement to a corresponding editor or analysis plot. The
plot type used depends on the selected design requirement type.

If the requirement is for a Bode, root locus, or Nichols plot and:

* A corresponding editor plot is open, the requirement is added to that plot.

* Only a corresponding analysis plot is open, the requirement is added to that plot.

* No corresponding plot is open, the requirement is added to a new Editor plot.
Otherwise, if the requirement is for a different plot type, the requirement is added to an

appropriate analysis plot. For example, a Step requirement bound is added to a new
step analysis plot.

12-12

Design Requirements

Edit Design Requirements

To edit an existing requirement, in Control System Designer, right-click the
corresponding plot, and select Design Requirements > Edit.

4\ Edit Design Requirement E@
Design requirernent: Matural frequency (1 rad,s) -

Design requirernent pararmeters

Matural frequency | at least - 1) radfs

| Claose || Help |

In the Edit Design Requirement dialog box, in the Design requirement drop-down list,
select a design requirement to edit. You can select any existing design requirement from
the current plot.

In the Design requirement parameters section, specify the requirement properties.
Parameters are dependent on the type of requirement you select. When you change a
parameter, the app automatically updates the requirement display in the associated plot.

You can also interactively adjust design requirements by dragging the edges or vertices of
the shaded exclusion region in the associated plot.

12-13

12 ciassical Control Design

12-14

[Root Locus Editar for LoopTransfer_C |

Root Locus Editor for LoopTransfer_C
- :

27 \
(4] L
£ 1
<
o [} . X AN R
(4]
E 4|
-2
-3
-10 -f i -4 2 0 2
Real Axis

Root Locus and Pole-Zero Plot Requirements
Settling Time

Specifying a settling time for a continuous-time system adds a vertical boundary line to
the root locus or pole-zero plot. This line represents pole locations associated with the
specified settling time. This boundary is exact for a second-order system with no zeros.
For higher order systems, the boundary is an approximation based on second-order
dominant systems.

To satisfy this requirement, your system poles must be to the left of the boundary line.

For a discrete-time system, the design requirement boundary is a curved line centered on
the origin. In this case, your system poles must be within the boundary line to satisfy the
requirement.

Percent Overshoot

Specifying percent overshoot for a continuous-time system adds two rays to the plot that
start at the origin. These rays are the locus of poles associated with the specified
overshoot value. In the discrete-time case, the design requirement adds two curves
originating at (1,0) and meeting on the real axis in the left-hand plane.

Design Requirements

Note The percent overshoot (p.o.) design requirement can be expressed in terms of the
damping ratio, (:
4)
1-¢°

p.o. = 100exp

Damping Ratio

Specifying a damping ratio for a continuous-time system adds two rays to the plot that
start at the origin. These rays are the locus of poles associated with the specified
overshoot value. This boundary is exact for a second-order system and, for higher order
systems, is an approximation based on second-order dominant systems.

To meet this requirement, your system poles must be to the left of the boundary lines.
For discrete-time systems, the design requirement adds two curves originating at (1,0)
and meeting on the real axis in the left-hand plane. In this case, your system poles must
be within the boundary curves.

Natural Frequency

Specifying a natural frequency bound adds a semicircle to the plot that is centered
around the origin. The radius of the semicircle equals the natural frequency.

If you specify a natural frequency lower bound, the system poles must remain outside this
semicircle. If you specify a natural frequency upper bound, the system poles must remain
within this semicircle.

Region Constraint

To specify a region constraint, define two or more vertices of a piece-wise linear boundary
line. For each vertex, specify Real and Imaginary components. This requirement adds a
shaded exclusion region on one side of the boundary line. To switch the exclusion region
to the opposite side of the boundary, in the response plot, right-click the requirement, and
select Flip.

To satisfy this requirement, your system poles must be outside of the exclusion region.

12-15

12 ciassical Control Design

12-16

Open-Loop and Closed-Loop Bode Diagram Requirements
Upper Gain Limit
You can specify upper gain limits for both open-loop and closed-loop Bode responses.

Design requirernent pararmeters

Type: Constrain system ta be <= the bound ~ |

Edge Start Edge End
Freq. (rad...| Mag. (dB) | Freq. (rad...| Mag. (dB) | Slope (dB...] ‘Weight
1] 3.1623] 1
31623] 10]] 1

A gain limit consists of one or more line segments. For the start and end points of each
segment, specify a frequency, Freq, and magnitude, Mag. You can also specify the slope
of the line segment in dB/decade. When you change the slope, the magnitude for the end
point updates.

If you are using optimization-based tuning, you can assign a tuning Weight to each
segment to indicate their relative importance.

In the Type drop-down list you can select whether to constrain the magnitude to be above
or below the specified boundary.

Lower Gain Limit
You can specify lower gain limits in the same way as upper gain limits.
Gain and Phase Margin

You can specify a lower bound for the gain margin, the phase margin, or both. The
specified bounds appear in text on the Bode magnitude plot.

Note Gain and phase margin requirements are only applicable to open-loop Bode
diagrams.

Design Requirements

Open-Loop Nichols Plot Requirements
Phase Margin

Specify a minimum phase margin as a positive value. Graphically, Control System
Designer displays this requirement as a region of exclusion along the 0 dB open-loop
gain axis.

Gain Margin

Specify a minimum gain margin value. Graphically, Control System Designer displays
this requirement as a region of exclusion along the -180 degree open-loop phase axis.

Closed-Loop Peak Gain

Specify a minimum closed-loop peak gain value. The specified dB value can be positive or
negative. The design requirement follows the curves of the Nichols plot grid. As a best
practice, have the grid on when using a closed-loop peak gain requirement.

Gain-Phase Design Requirement

To specify a gain-phase design requirement, define two or more vertices of a piece-wise
linear boundary line. For each vertex, specify Open-Loop phase and Open-Loop gain
values. This requirement adds a shaded exclusion region on one side of the boundary line.
To switch the exclusion region to the opposite side of the boundary, in the Nichols plot,
right-click the requirement, and select Flip.

Display Location

When editing a phase margin, gain margin, or closed-loop peak gain requirement, you can
specify the display location as -180 = k360 degrees, where k is an integer value.

12-17

12 ciassical Control Design

i

4\ Edit Design Requirement

Design requirement::PM = 30 (deq) v:
Design requirement parameters

[C] Gain margin > 20

Phase margin >

G:uc ated at I -180|

If you enter an invalid location, the closest valid location is selected. While displayed
graphically at only one location, these requirements apply regardless of actual phase; that
is, they are applied for all values of k.

Step and Impulse Response Requirements
Upper Time Response Bound
You can specify upper time response bounds for both step and impulse responses.

Design requirerment pararmeters

Type: :Cl:unstrain sighal to be <= the bound v:

Edge Start Edge End
Tirne (53 | &mplitude | Tirme (53 | &mplitude | Slope (1757 | Weight
0 1 5 1 1] 1
5 1 10 1] 1

A time-response bound consists of one or more line segments. For the start and end
points of each segment, specify a Time and Amplitude value. You can also specify the
slope of the line segment. When you change the slope, the amplitude for the end point
updates.

12-18

Design Requirements

If you are using optimization-based tuning, you can assign a tuning Weight to each

segment to indicate its relative importance.

In the Type drop-down list, you can select whether to constrain the response to be above

or below the specified boundary.

Lower Time Response Bound

You can specify lower time response bounds for both step and impulse responses in the

same way as upper gain limits.

Step Response Bound

For a step response plot, you can also specify a step response bound design requirement.

Design requirerment pararmeters

Initial walue: 1]
Step time [seconds
Rize time ; 0.4000 | seconds
Settling time]J seconds
e Owvershoots 10.0000

o Undershoot;

an
2.0000

To define a step response bound requirement, specify the following step response

parameters:

* Final value — Final steady-state value

* Rise time — Time required to reach the specified percentage, % Rise, of the Final

value

» Settling time — Time at which the response enters and stays within the settling

percentage, % Settling, of the Final value

* % Overshoot — Maximum percentage overshoot above the Final value

* % Undershoot — Maximum percentage undershoot below the Initial value

In Control System Designer, step response plots always use an Initial value and a

Step time of 0

12-19

12 Cciassical Control Design

See Also

More About

. “Optimize LTI System to Meet Frequency-Domain Requirements” (Simulink Design
Optimization)

. “Design Optimization-Based PID Controller for Linearized Simulink Model (GUI)”
(Simulink Design Optimization)

12-20

Feedback Control Architectures

Feedback Control Architectures

When you open Control System Designer from MATLAB, you can select one of six
possible control architecture configurations.

Configura |Block Diagram Features
tion
1 * Single feedback loop
* Compensator (C) and plant (G) in forward path
3 gymtrmics (H) in feedback path
efilten F
2 * Single feedback loop
3 ¢ Compensator (C) and plant (G) in forward path
» Feedforward prefilter F for input disturbance
attenuation
orrdymamics (H) in feedback path

12-21

12 ciassical Control Design

Configura |Block Diagram Features
tion
4 * Nested multiloop architecture

;.l:%.lfr loop with compensator (C1) in forward path

r Ipop with compensator (C2) in feedback
path

. L o1} dynamics (H) in feedback path

5 ¢ Standard Internal Model Control (IMC)
architecture
Gd

. mpensator (C) in forward path

— F ant nt predictive model G2
. Frurbanc odel Gd

» Prefilter F

6 * (Cascaded multiloop architecture with the inner
loop in the forward path of the outer loop.
0

yFin the forward path and
H?2) in the feedback path

If your control application does not match one of the supported control architectures, you
can use block diagram algebra to convert your system to match an architecture. For an
example of such an application, see “Design Multiloop Control System” on page 12-24.

Note If you are unable to match your application to one of the supported control
architectures, consider using the Control System Tuner app to design your control
system.

12-22

See Also

See Also

Control System Designer | sisoinit

More About
. “Design Multiloop Control System” on page 12-24

12-23

12 ciassical Control Design

Design Multiloop Control System

12-24

In many applications, a single-loop control system is not feasible due to your plant design
or design requirements. If you have a design with an inner and outer loop, you can use
Control System Designer to design compensators for both loops.

The typical workflow is to tune the compensator for the inner loop first, by isolating the
inner loop from the rest of the control system. Once the inner loop is satisfactorily tuned,
tune the outer loop to achieve your desired closed-loop response.

System Model

For this example develop a position control system for a DC motor. A single-loop angular
velocity controller is designed in “Bode Diagram Design” on page 12-49. To design an
angular position controller, add an outer loop that contains an integrator.

BC Va w B

—h-(i)i Cl ? DC Motor é

C2 =

Define a state-space plant model, as described in “SISO Example: The DC Motor”.

2.0

0.5

.015

.015

0.2

0.02

reate the state-space model
[-R/L -Kb/L; Km/J -Kf/J]

Define the motor parameters

P RARAXRNIMT I
-+ T 3
I nnu

o

A

Design Multiloop Control System

B =[1/L; 0];
C=1[011;

D = [0];

sys dc = ss(A,B,C,D);

Design Objectives

The design objective is to minimize the closed-loop step response settling time, while
maintaining an inner-loop phase margin of at least 65 degrees with maximum bandwidth:

* Minimal closed-loop step response settling time.
* Inner-loop phase margin of at least 65 degrees.
¢ Maximum inner-loop bandwidth.

Match System To Control Architecture

Control System Designer has six possible control architectures from which you can
choose. For more information on these architectures, see “Feedback Control
Architectures” on page 12-21.

For this example use Configuration 4, which has an inner and outer control loop.

Currently, the control system structure does not match Configuration 4. However, using
block diagram algebra, you can modify the system model by adding:

* An integrator to the motor output to get the angular displacement.
» A differentiator to the inner-loop feedback path.

12-25

12 Cciassical Control Design

12-26

Fr——————— = — — T
B | Va w 1 | g
—l-(i)i Cl {3 DC Motor = R
I I
L. - - - —_ —— __ __ — _
- —l =1
| |
€20
| |
| |
| s |
L—T— 41

At the MATLAB command line, add the integrator to the motor plant model.
plant = sys dc*tf(1,[1,0]);

Create an initial model of the inner-loop compensator that contains the feedback
differentiator.

Cdiff = tf('s"');

Define Control Architecture

Open Control System Designer.

controlSystemDesigner

In Control System Designer, on the Control System tab, click Edit Architecture.

In the Edit Architecture dialog box, under Select Control Architecture, click the fourth
architecture.

Design Multiloop Control System

Edit Architecture - Configuration 4 X
Select
Control Architecture:

Blocks | Loop Signs

identifier Block Name “alue
‘E[C1 [=1 || <1x zpk> | 2

c2 [=: | |<1x1 zpk> |

G G | <1t |

H H || <1xt > |

| ok || cancel |[Help |

Import the plant and controller models from the MATLAB workspace.

In the Blocks tab, for:

* Controller C2, specify a Value of Cdiff.

* Plant G, specify a Value of plant.

Click OK.

The app updates the control architecture and imports the specified models for the motor

plant and the inner-loop controller.

In Control System Designer, the following plots open:

12-27

12 ciassical Control Design

* Bode Editor for LoopTransfer C1 — Open-loop Bode Editor for the outer loop

* Root Locus Editor for LoopTransfer C1 — Open-loop Root Locus Editor for the
outer loop

* Bode Editor for LoopTransfer C2 — Open-loop Bode Editor for the inner loop

* Root Locus Editor for LoopTransfer C2 — Open-loop root Locus Editor for the
inner loop

* IOTransfer r2y: step — Overall closed-loop step response from input r to output y

For this example, close the Bode Editor for LoopTransfer C1 and Root Locus Editor
for LoopTransfer_C2 plots.

Since the inner loop is tuned first, configure the plots to view just the inner-loop Bode
editor plot. On the View tab, click Single, and click Bode Editor for LoopTransfer C2.

4\ Control System Designer - Bode Editor for LoopTransfer_C2 EI@

CONTROL SYSTEM BODE EDITOR g_)., @, UT_||.| _ﬁ (EE| L @ @ @

E [T] LeftRight {1=| Tabs Position v
Ti it M1 Shrink Tabs to Fit
‘op/Bottom — rink Tabs to
i Custom « [Alphabetize
TLES 00U MENT TABS — '\
Data Browser ® | Root Locus Editor for LoopTransfer_Cl(| Bode Editor for LoopTransfer_C2 |)JTransfer_rE)r: step |
w Controllers and Fixed Blocks S~ -
a Bode Editor for LoopTransfer_C2
-20 T T T
C2
G
H 40
o
R
5 60
—

w Designs

—

Isolate Inner Loop

To isolate the inner loop from the rest of the control system architecture, add a loop
opening to the open-loop response of the inner loop. In the Data Browser, right-click
LoopTransfer (2, and select Open Selection.

To add a loop opening at the output of outer-loop compensator, C1, in the Open-Loop

Transfer Function dialog box, click + Add loop opening location to list. Then, select
uCl.

12-28

Design Multiloop Control System

Open-Loop Transfer Function »

Responze Name: |Lninran5fer_C2 |

Specify the open-loop response at the following locations:

ucz ;X
== Add signal to list

Compute open-loop response with the following loops open:

== Add loop opening location to list

e

u

huﬂ

uC2 d
ym
G 4.2;7_3'
?ﬂ— H [«
n
| ok || Cancel || Help |
Click OK.

The app adds a loop opening at the selected location. This opening removes the effect of
the outer control loop on the open-loop transfer function of the inner loop.

The Bode Editor response plot updates to reflect the new open-loop transfer function.

12-29

12 ciassical Control Design

[Root Locus Editor for LoopTransfer_C1 "[Bode Editor for LoopTransfer_C2 "l 10Transfer_r2y: step "]

Magnitude (dB)

Phase (deg)

12-30

Bode Editor for LoopTransfer_C2

| G.M.cinf
Freq: Inf
Unstable loop

-100

-120

-135 7
P.M.:inf

Freq: MaM
-180 ! ! !

107 10° 10 10° 10°
Frequency (rad/s)

Tune Inner Loop
To increase the bandwidth of the inner loop, increase the gain of compensator C2.

In the Bode Editor plot, drag the magnitude response upward until the phase margin is
65 degrees. This corresponds to a compensator gain of 107. Increasing the gain further
reduces the phase margin below 65 degrees.

Design Multiloop Control System

Root Locus Editor for LoopTransfer_C1 “’|. Bode Editor for LoopTransfer_C2 = | [OTransfer_rdy: step |

Bode Editor for LoopTransfer_C2

20

i

M3

=
T

Magnitude (dB)
L
]

| G.M.inf
Freq: Inf
Unstable lcop

0 L | T L |

135
(| PM.:65deg)
feq. 10.4 rad/s

-180
10" 10° 10' 102 103

Frequency (rad/s)

praurpgra | Pesrra—g | ol el

Alternatively, you can adjust the gain value using the compensator editor. For more
information, see “Edit Compensator Dynamics” on page 12-93.

Tune Outer Loop

With the inner loop tuned, you can now tune the outer loop to reduce the closed-loop
settling time.

12-31

12 ciassical Control Design

In Control System Designer, on the View tab, select Left/Right. Arrange the plots to
display the Root Locus for LoopTransfer C1 and I0Transfer r2y step plots

simultaneously.

To view the current settling time, right-click in the step response plot and select

Characteristics > Settling Time.

+1 | Root Locus Editar for LonpTransfer_C1 [

Root Locus Editor for LoopTransfer_C1
40 . - - . ; -

20 1

Imag Axis
=

-50 -4 -30 -20 -10 0 10 20
Real Axis

Amplitude

=
=1

[I0Transfer_r2y: step 1

Step Response

From: r To: y

0 200 400 600 BOO 1000 41200
Time (seconds)

The current closed-loop settling time is greater than 500 seconds.

In the Root Locus Editor, increase the gain of compensator C1. As the gain increases,
the complex pole pair moves toward a slower time constant and the real pole moves

12-32

See Also

+1

-

Imag Axis

toward a faster time constant. A gain of 600 produces a good compromise between rise

time and settling time.

40

30

20

10

-10

-20

-30

40

Root Locus Editar for LoopTransfer_C1

Root Locus Editor for LoopTransfer_C1

-50

-40 -20
Real Axis

[IOTransfer_r2y: step |

Step Response
From: r To: y

1.2

0.8

Amplitude

0.4

0.2

0 02 04 06 08 1 12
Time (seconds)

With a closed-loop settling time below 0.8 seconds and an inner-loop phase margin of 65
degrees, the design satisfies the design requirements.

See Also

Control System Designer

12-33

12 Cciassical Control Design

More About
. “Feedback Control Architectures” on page 12-21

12-34

Multimodel Control Design

Multimodel Control Design

Typically, the dynamics of a system are not known exactly and may vary. For example,
system dynamics can vary because of:

* Parameter value variations caused by manufacturing tolerances — For example, the
resistance value of a resistor is typically within a range about the nominal value, 5 Q
+/- 5%.

* Operating conditions — For example, aircraft dynamics change based on altitude and
speed.

Any controller you design for such a system must satisfy the design requirements for all
potential system dynamics.

Control Design Overview

To design a controller for a system with varying dynamics:

Sample the variations.

Create an LTI model for each sample.

Create an array of sampled LTI models.

Design a controller for a nominal representative model from the array.
Analyze the controller design for all models in the array.

O U1 A W N KR

If the controller design does not satisfy the requirements for all the models, specify a
different nominal model and redesign the controller.

Model Arrays

In Control System Designer, you can specify multiple models for any plant or sensor in
the current control architecture using an array of LTI models (see “Model Arrays” on
page 2-101). If you specify model arrays for more than one plant or sensor, the lengths of
the arrays must match.

Create Model Arrays
To create arrays for multimodel control design, you can:

* Create multiple LTI models using the tf, ss, zpk, or frd commands.

12-35

12 ciassical Control Design

12-36

o°

Specify model parameters.

m= 3;

b =0.5;

k = 8:1:10;

T=0.1:.05:.2;

% Create an array of LTI models.

for ct = 1l:length(k);
G(:,:,ct) = tf(1,[m,b,k(ct)]);
end

* Create an array of LTI models using the stack command.

% Create individual LTI models.

Gl = tf(1, [1 1 8]);

G2 = tf(1, [1 1 9]);

G3 = tf(1, [1 1 10]);

% Combine models in an array.
G = stack(1,G1,G2,G3);

* Perform batch linearizations at multiple operating points. Then export the computed
LTI models to create an array of LTI models. See the example “Reference Tracking of
DC Motor with Parameter Variations” (Simulink Control Design). (Requires Simulink
Control Design software)

* Sample an uncertain state-space (uss) model using usample.

* Compute a uss model from a Simulink model. Then use usubs or usample to create
an array of LTT models. See “Obtain Uncertain State-Space Model from Simulink
Model” (Robust Control Toolbox). (Requires Robust Control Toolbox software)

» Specify a core Simulink block to linearize to a uss or ufrd model. See “Specify
Uncertain Linearization for Core or Custom Simulink Blocks” (Robust Control
Toolbox). (Requires Simulink Control Design and Robust Control Toolbox software)

Import Model Arrays to Control System Designer

To import models as arrays, you can pass them as input arguments when opening Control
System Designer from the MATLAB command line. For more information, see Control
System Designer.

You can also import model arrays into Control System Designer when configuring the
control architecture. In the Edit Architecture dialog box:

* In the Value text box, specify the name of an LTI model from the MATLAB workspace.
* To import block data from the MATLAB workspace or from a MAT-file in your current

working directory, click &

Multimodel Control Design

Edit Architecture - Configuration 1
Select
Control &rchitecture:

Idertifier Block Mame Walue

ﬂ‘E;:r_ET C [c | smazpks | 4y
F F | |<lxizpks |
G G | ebaats |
H H | et | b

| ok || cancel || Help |

Nominal Model

What Is a Nominal Model?

The nominal model is a representative model in the array of LTI models that you use to
design the controller in Control System Designer. Use the editor and analysis plots to

visualize and analyze the effect of the controller on the remaining plants in the array.

You can select any model in the array as your nominal model. For example, you can
choose a model that:

* Represents the expected nominal operating point of your system.

12-37

12 Cciassical Control Design

12-38

» Is an average of the models in the array.
* Represents a worst-case plant.
» Lies closest to the stability point.

Tip You can plot and analyze the open-loop dynamics of the system on a Bode plot to
determine which model to choose as nominal.

Specify Nominal Model

To select a nominal model from the array of LTI models, in Control System Designer,
click Multimodel Configuration. Then, in the Multimodel Configuration dialog box,
select a Nominal model index. The default index is 1.

For each plant or sensor that is defined as a model array, the app selects the model at the
specified index as the nominal model. Otherwise, the app uses scalar expansion to apply
the single LTI model for all model indices.

For example, for the following control architecture:

~{E - e

H

if G and H are both three-element arrays and the nominal model index is 2, the software
uses the second element in both the arrays to compute the nominal model:

Nominal Model

Y

~[F

The nominal response from r to y is:

Multimodel Control Design

CG,

T=1¥cGH,

The app also computes and plots the responses showing the effect of C on the remaining
pairs of plant and sensor models — G;H; and G;H;.

If only G is an array of LTI models, and the specified nominal model is 2, then the control
architecture for nominal response is:

Nominal Model

~.IF | G,

In this case, the nominal response from r to y is:

CG,

T'=17¥cGH

The app also computes and plots the responses showing the effect of C on the remaining
pairs of plant and sensor model — GH and G;H.

Frequency Grid

The frequency response of a system is computed at a series of frequency values, called a
frequency grid. By default, Control System Designer computes a logarithmically equally
spaced grid based on the dynamic range of each model in the array.

Specity a custom frequency grid when:

* The automatic grid has more points than you require. To improve computational
efficiency, specify a less dense grid spacing.

* The automatic grid is not sufficiently dense within a particular frequency range. For
example, if the response does not capture the resonant peak dynamics of an
underdamped system, specify a more dense grid around the corner frequency.

12-39

12 Cciassical Control Design

* You are only interested in the response within specific frequency ranges. To improve
computational efficiency, specify a grid that covers only the frequency ranges of
interest.

For more information on specifying logarithmically spaced vectors, see Logspace.

Note Modifying the frequency grid does not affect the frequency response computation
for the nominal model. The app always uses the Auto select option to compute the
nominal model frequency response.

Design Controller for Multiple Plant Models

This example shows how to design a compensator for a set of plant models using Control
System Designer.

1 Create Array of Plant Models

Create an array of LTI plant models using the stack command.

Create an array of LTI models to model plant (G) variations.
= tf(1,[1 1 8]);
= tf(1,[1 1 9]);
= tf(1,[1 1 10]);
G = stack(1,G1,G2,G3);
2 Create Array of Sensor Models

Gl
G2
G3

Similarly, create an array of sensor models.

H1 = tf(1,[1/0.1,1]);
H2 = tf(1,[1/0.15,1]);
H3 = tf(1,[1/0.2,1]);

H = stack(1l,H1,H2,H3);
3 Open Control System Designer

Open Control System Designer, and import the plant and sensor model arrays.

controlSystemDesigner(G,1,H)

12-40

Multimodel Control Design

4\ Control Systern Designer - Bode Editor for LoopTransfer_ C

[CONTROL SYSTEM BODE EDITOR

E]
0 B = B & 2 8 8
Open Save Edit Multimodel Tuning New Store Retrieve Compare Export Preferences
i i Ci i - Plot - -
FILE | ARCHITECTURE | TUNING METHODS | ANALYSIS | DESIGNS |RESULTS | FREFEREMCES |
Data Browser @ J Bode Editor for LoopTransfer C 0 | Root Locus Editor for LoopTransfer C |
¥ Controllers and Fixed Blocks) Root Locus Editor for LoopTransfer_C
3 Bode Editor for LoopTransfer_C .
C 5
@ N
i < :
b -50 o 0 '
= g :
w Designs é -
E -5
i N
£ -100 | Nominal :
G.M:382dB 0 8 6 4 2 0 2 4
Freq: 2.85 rad/s "
Stable loop : R_ea.l fxs
-150 | I0Transfer_r2y: step 30 |
* Responses 0 Step Response
LoopTransfer_C - From: r To: y
10Transfer_r2y 0.2
I0Transfer_r2u = 33 90
10Transfer_du2y B 0.15
10T ransfer_dy2y -1k 2
b =
w Preview L 180 Nominal EL Ol
P.M.: inf =
Freq: NaN 0.05
-270
107 10" 10°
. 0
Frequency (rad/s) O 5 10 15 20 25 30 35
The app opens and imports the plant and sensor model arrays.
4 Configure Analysis Plot

To view the closed-loop step response in a larger plot, in Control System Designer,
on the View tab, click Single. Then, click IOTransfer r2y: step.

12-41

12 Cciassical Control Design

4\ Control System Designer - I0Transfer_r2y: step

Data Browser ® | Bode Editor for LoopTransfer C * | Root Locus Editor for LoopTransfer_C

w Controllers and Fixed Blocks

=B
CONTROL SYSTEM o 3 E 4 E‘:ga"_;_"ieé;"" g & f

7 LeftRight % 5= Tabs Position =
I

— Top/Bottom I Shrink Tabs to Fit
Float

10Transfer_r2y: step % |

E

] Step Response

12-42

From: r To: y
e —— : R —

By default the step response shows only the nominal response. To display the
individual responses for the other model indices, right-click the plot area, and select
Multimodel Configuration > Individual Responses.

Step Response
From: r To:y
|:|'2 T T T T T
0.18
0.16 b Systems *
Characteristics r
0.14 Multimodel Display ! Bounds
Design Requirements hIndividuaI Responses
) Grid
= |14 T e
= 0.1 | Mormalize
g Full View
< 0.08 - Properties ...
0.06

Multimodel Control Design

Note To view an envelope of all model responses, right-click the plot area, and select
Multimodel Configuration > Bounds

The plot updates to display the responses for the other models.

Step Response

From: r To: y
Dz T T T T T T

0.16

0.14

[

=

ra
T

=
-
T

Amplitude

0.08 I

0.06 [7

0.04] 7

0.02 7

0 5 10 15 20 25 30 35
Time (seconds)

5 Select Nominal Model

On the Control System tab, click Multimodel Configuration.

12-43

12 Cciassical Control Design

In the Multimodel Configuration dialog box, specify a Nominal Model Index of 2.

Multimodel Configuration Dhalog

MNominal Model Index: |2

Frequency Grid for Multimodel Computations

O Auto select
& User specified frequencies (rad/z): |Ingspace[-2,2,300]|

| Close || Help]

Click Close.

12-44

Multimodel Control Design

Step Response

From: r To:y
T

0.2 T T

0.18 I 7

=

—

B
T

=

—

M3
T

Amplitude
=

=
[
fa)

T

0.06 [7

0.04 7

0.02 7

D 1 1 1
0 5 10 15 20 25 30

Time (seconds)

The selected nominal model corresponds to the average system response.
6 Design Compensator

To design a compensator using the nominal model, you can use any of the supported
“Control System Designer Tuning Methods” on page 12-4.

12-45

12 Cciassical Control Design

12-46

For this example, use the Compensator Editor to manually specify the compensator
dynamics. Add an integrator to the compensator and set the compensator gain to
0.4. For more information, see “Edit Compensator Dynamics” on page 12-93.

.

4\ Compensator Editor

Compensator

C > =04 X~

Pole/Zero |

Dynamics Edj

Type Location Damping Frequency
Integrator 0 -1 0

Analyze Results

The tuned controller produces a step response with minimal overshoot for the
nominal models and a worst-case overshoot less than 10%.

See Also

Amplitude

Step Response
From: r To: y

1.2 T T T

0.8 I

=
(=1}
T

0.2

0 10 20 30 40 50
Time (seconds)

See Also

Control System Designer

Related Examples
. “Model Arrays” on page 2-101

60

70

80

12-47

12 Cciassical Control Design

. “Control System Designer Tuning Methods” on page 12-4

12-48

Bode Diagram Design

Bode Diagram Design

Bode diagram design is an interactive graphical method of modifying a compensator to
achieve a specific open-loop response (loop shaping). To interactively shape the open-loop
response using Control System Designer , use the Bode Editor. In the editor, you can
adjust the open-loop bandwidth and design to gain and phase margin specifications.

To adjust the loop shape, you can add poles and zeros to your compensator and adjust
their values directly in the Bode Editor, or you can use the Compensator Editor. For
more information, see “Edit Compensator Dynamics” on page 12-93.

For information on all of the tuning methods available in Control System Designer, see
“Control System Designer Tuning Methods” on page 12-4.

Tune Compensator For DC Motor Using Bode Diagram
Graphical Tuning

This example shows how to design a compensator for a DC motor using Bode diagram
graphical tuning techniques.

Plant Model and Requirements

The transfer function of the DC motor plant, as described in “SISO Example: The DC
Motor”, is:

_ 1.5
s? + 14s + 40.02

For this example, the design requirements are:

* Rise time of less than 0.5 seconds

* Steady-state error of less than 5%

* Overshoot of less than 10%

* Gain margin greater than 20 dB

* Phase margin greater than 40 degrees

Open Control System Designer

At the MATLAB command line, create a transfer function model of the plant, and open
Control System Designer in the Bode Editor configuration.

12-49

12 Cciassical Control Design

12-50

G = tf(1.5,[1 14 40.02]);
controlSystemDesigner('bode',G);

The app opens and imports G as the plant model for the default control architecture,
Configuration 1.

In the app, the following response plots open:

* Open-loop Bode Editor for the LoopTransfer_ C response. This response is the
open-loop transfer function GC, where C is the compensator and G is the plant.

* Step Response for the I0Transfer r2y response. This response is the input-output
transfer function for the overall closed-loop system.

Tip To open the open-loop Bode Editor when Control System Designer is already
open, on the Control System tab, in the Tuning Methods drop-down list, select Bode
Editor. In the Select Response to Edit dialog box, select an existing response to plot, or
create a New Open-Loop Response.

To view the open-loop frequency response and closed-loop step response simultaneously,
on the Views tab, click Left/Right.

P

4\ Control Systern Designer - I0Transfer_r2y: step

CONTROL SYSTEM

% H=| Tabs Position ~
[T Shrink Tabs to Fit

= Custom - M Alphabetize

COCUMENT TABS

L) |
W

The app displays the Bode Editor and Step Response plots side-by-side.

Bode Diagram Design

Adjust Bandwidth

Since the design requires a rise time less than 0.5 seconds, set the open-loop DC
crossover frequency to about 3 rad/s. To a first-order approximation, this crossover
frequency corresponds to a time constant of 0.33 seconds.

To make the crossover easier to see, turn on the plot grid. Right-click the Bode Editor
plot area, and select Grid. The app adds a grid to the Bode response plots.

To adjust the crossover frequency increase the compensator gain. In the Bode Editor

plot, in the Magnitude response plot, drag the response upward. Doing so increases the
gain of the compensator.

12-51

12 Cciassical Control Design

J Bode Editor for LoopTransfer C 1

Bode Editor for LoopTransfer_C
20 . . -
40t
h
£
, 607
)
£
L, -80
3
i G.M.: inf
-oo Freq: Inf
Stable loop
=120 ’
0
- =45
[
1
P
b =80
2l
X
M 135
P .M. inf
Freq: NaM
=180 :
107 10° 10 102 10°
Frequency (rad/s)

As you drag the magnitude plot, the app computes the compensator gain and updates the
response plots.

Drag the magnitude response upward until the crossover frequency is about 3 rad/s.

12-52

Bode Diagram Design

_J’ Bode Editor for LoopTransfer C 2 1

Bode Editor for LoopTransfer_C
20 : : -
D -
— /
=
o -20
=)
=
o 40
L4]
= G.M.:inf
LN
oo Freq: Inf
Stable loop
-80 ’
0
-~ =45
[
1
.
b 80
2l
X
M 135
P.M.: 126 deg
Freq: 3.02 rad/s
-180
107 10° 10 102 10°
Frequency (rad/s)

View Step Response Characteristics

To add the rise time to the Step Response plot, right-click the plot area, and select
Characteristics > Rise Time.

To view the rise time, move the cursor over the rise time indicator.

12-53

12 ciassical Control Design

_J [I0Transfer_r2y step]_

Step Response

FFDFII'I. r To: @ @ @ E

0.6

0.5

ystem: IOTransfer_r2y
| WO rtoy
| Rise time (seconds): 0.231

0.4

Amplitude
&

0.2

0.1

0 0.2 0.4 0.6 0.8
Time (seconds)

The rise time is around 0.23 seconds, which satisfies the design requirements.

Similarly, to add the peak response to the Step Response plot, right-click the plot area,
and select Characteristics > Peak Response.

12-54

Bode Diagram Design

]’ [OTransfer_rdy: step 1

Step Response
From: r To: @ @ ‘E" E
0.6 ———— . T T T |
.............................. [system: [OTransfer_r2y
| WO rtoy
05 F | Peak amplitude: 0.587
' | Overshoot (%): 3.54
| At time (seconds): 0.48
: :
04 :
I
o !
= I
2 . i
EL 0.3 :
< i
:
02 :
:
:
:
0.1 :
:
:
:
0 . 1 1 1 1
0 0.2 0.4 06 0.8
Time (seconds)

The peak overshoot is around 3.5%.
Add Integrator To Compensator

To meet the 5% steady-state error requirement, eliminate steady-state error from the
closed-loop step response by adding an integrator to your compensator. In the Bode
Editor right-click in the plot area, and select Add Pole/Zero > Integrator.

12-55

12 Cciassical Control Design

_I Bode Editor for LoopTransfer C ‘[

Bode Editor for LoopTransfer_C

50

=

&)
o

TOTEI T OO ey

-100

G.M.: 206 dB
Freq: 6.33 rad/s
Stable loop

-1356

T T os (oY]

-225

-270

-180

P.M.: 65.7 deg
Freq: 1.24 rad/s

107!

12-56

109 10’ 102
Frequency (rad/s)

102

| IOTransfer_r2y: step |

Amplitude

Step Response

From: r To: @ @ @ E

0.8

=
=]

0.4

0.2

0 1 2 3
Time (seconds)

Adding an integrator produces zero steady-state error. However, changing the

compensator dynamics also changes the crossover frequency, increasing the rise time. To

reduce the rise time, increase the crossover frequency to around 3 rad/s.

Adjust Compensator Gain

To return the crossover frequency to around 3 rad/s, increase the compensator gain
further. Right-click the Bode Editor plot area, and select Edit Compensator.

In the Compensator Editor dialog box, in the Compensator section, specify a gain of 99,

and press Enter.

Bode Diagram Design

The response plots update automatically.

J Bode Editor for LoopTransfer_C 1

Bode Editor for LoopTransfer_C

50

[T

=

T T MO (o]
£n
=

-100 | G.M.:11.5dB
Freq: 6.33 rad/s
Stable loop

-150

-50

-135

180 -

T Ioos (u=y]

-225
P.M.: 38 deg

Freq: 2.89 rad/s

-270
107! 10° 10" 102
Frequency (rad/s)

| IOTransfer_r2y: step [

Amplitude

1.4

127

=
fa

o
(=]

0.4r-

0.2 i

Step Response

From: r To: @ @ @ E

2 3 4 5 6
Time (seconds)

The rise time is around 0.4 seconds, which satisfies the design requirements. However,
the peak overshoot is around 32%. A compensator consisting of a gain and an integrator
is not sufficient to meet the design requirements. Therefore, the compensator requires

additional dynamics.

Add Lead Network to Compensator

In the Bode Editor, review the gain margin and phase margin for the current
compensator design. The design requires a gain margin greater than 20 dB and phase

12-57

12 Cciassical Control Design

12-58

margin greater than 40 degrees. The current design does not meet either of these
requirements.

5 50
5
p
i -@ GM:115dB)
Stable loop
-150
-90
- -135
[
]
5,
b 180 -—————
&l
g
F
P.M.: 38 deg
req: 2.89 rad/s
-270
107" 10° 10"
Frequency |

To increase the stability margins, add a lead network to the compensator.
In the Bode Editor, right-click and select Add Pole/Zero > Lead.

To specify the location of the lead network pole, click on the magnitude response. The app
adds a real pole (red X) and real zero (red 0) to the compensator and to the Bode Editor
plot.

In the Bode Editor, drag the pole and zero to change their locations. As you drag them,
the app updates the pole/zero values and updates the response plots.

To decrease the magnitude of a pole or zero, drag it towards the left. Since the pole and
zero are on the negative real axis, dragging them to the left moves them closer to the
origin in the complex plane.

Bode Diagram Design

Tip As you drag a pole or zero, the app displays the new value in the status bar, on the
right side.

Time (seconds

i) Drag this pole to the desired location., Current Location: -12.3

As an initial estimate, drag the zero to a location around -7 and the pole to a location
around -11.

12-59

12 Cciassical Control Design

_J Bode Editor for LoopTransfer_C 1 | IOTransfer_t2y: step |

Bode Editor for LoopTransfer_C Step Response

50

TG T s oy |
i
on
=

-100 | G.M.: 14.3 dB
Freq: 8.11 rad/s

From: r To:y

1.4

1271

-225

=270

L 0.8
Stable loop -
150 =
¥ E
2L < 06}
- -135 H
g I
5 0.4
b 180 [F-———
n
i

Freq: 2.99 rad/s

0.271

107"

12-60

i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
)

2) 4
Time (seconds)

10° 10 102 10° 0
Frequency (rad/s)

The phase margin meets the design requirements; however, the gain margin is still too
low.

Edit Lead Network Pole and Zero
To improve the controller performance, tune the lead network parameters.

In the Compensator Editor dialog box, in the Dynamics section, click the Lead row.

Bode Diagram Design

In the Edit Selected Dynamics section, in the Real Zero text box, specify a location of
-4.3, and press Enter. This value is near the slowest (left-most) pole of the DC motor

plant.

In the Real Pole text box, specify a value of -28, and press Enter.

4\ Com pensator Editor EI@
Compensator
- 1 +0.23s5)
C - 99 N
' s (1 + 0.0365)
Pole/Zero
Dynamics Edit Selected Dynamics
Type Laocation Damping Frequency
Integrator] -1]
Lead -4.3, -28 1 4.3, 28

Real Zero -4.3

Real Pole -2
Max Delta [
Phase (deg) 47.201

at Frequency 10573

Right-click to add or delete poles/zeros

When you modify a lead network parameters, the Compensator and response plots
update automatically.

In the app, in the Bode Editor, the gain margin of 20.5 just meets the design
requirement.

12-61

12 ciassical Control Design

To add robustness to the system, in the Compensator Editor dialog box, decrease the
compensator gain to 84.5, and press Enter. The gain margin increases to 21. 8, and the
response plots update.

| Bode Editor for LoopTransfer_C | _J’ [0Transfer_rdy: step]_
Bode Editor for LoopTransfer_C Step Response
=0 From: r Tao: @ @ @ IE'

=

an
o

IV | LGS UL)

0.8
100 | G.M: 218 dB

Freq: 16.4 rad/s T
Stable loop E
150 EL 0.6
20
=T
. -135 0.4
n
|k}
2
3 480 F—r—— el N -
L]
g 0.2
" 225
P.M.: 65.6 deg
Freq: 2.95 rad/s
270 a
1071 10° 10" 102 102 a 0.5 1 1.5

Time (seconds)

Frequency (rad/s)

In Control System Designer, in the response plots, compare the system performance to
the design requirements. The system performance characteristics are:

* Rise time is 0.445 seconds.
» Steady-state error is zero.

12-62

See Also

* Overshoot is 3.39%.
* Gain margin is 21.8 dB.
* Phase margin is 65.6 degrees.

The system response meets all of the design requirements.

See Also
Control System Designer | bodeplot

More About

. “Edit Compensator Dynamics” on page 12-93

. “Control System Designer Tuning Methods” on page 12-4
. “Root Locus Design” on page 12-64

. “Nichols Plot Design” on page 12-80

12-63

12 Cciassical Control Design

Root Locus Design

12-64

Root locus design is a common control system design technique in which you edit the
compensator gain, poles, and zeros in the root locus diagram.

As the open-loop gain, k, of a control system varies over a continuous range of values, the
root locus diagram shows the trajectories of the closed-loop poles of the feedback system.
For example, in the following tracking system:

e

+
r— (= k| — = P(s) -

His) -

P(s) is the plant, H(s) is the sensor dynamics, and k is an adjustable scalar gain The
closed-loop poles are the roots of

q(s) = 1 + kP(s)H(s)

The root locus technique consists of plotting the closed-loop pole trajectories in the
complex plane as k varies. You can use this plot to identify the gain value associated with
a desired set of closed-loop poles.

Tune Electrohydraulic Servomechanism Using Root Locus
Graphical Tuning

This example shows how to design a compensator for an electrohydraulic
servomechanism using root locus graphical tuning techniques.

Plant Model
A simple version of an electrohydraulic servomechanism model consists of

* A push-pull amplifier (a pair of electromagnets)
* Asliding spool in a vessel of high-pressure hydraulic fluid

Root Locus Design

* Valve openings in the vessel to allow for fluid to flow
* A central chamber with a piston-driven ram to deliver force to a load
* A symmetrical fluid return vessel

Return

(-

Push-Pull
Amplifier

ﬁ Piston-driven ram

The force on the spool is proportional to the current in the electromagnet coil. As the
spool moves, the valve opens, allowing the high-pressure hydraulic fluid to flow through
the chamber. The moving fluid forces the piston to move in the opposite direction of the
spool. For more information on this model, including the derivation of a linearized model,
see [1].

Amplitier Pressure

You can use the input voltage to the electromagnet to control the ram position. When
measurements of the ram position are available, you can use feedback for the ram
position control, as shown in the following, where Gservo represents the
servomechanism:

12-65

12 Cciassical Control Design

12-66

Position +O Cls) Voltage Gservols Position

Reference Applied Ram

Compensator Plant

Design Requirements

For this example, tune the compensator, C(s) to meet the following closed-loop step
response requirements:

* The 2% settling time is less than 0.05 seconds.
* The maximum overshoot is less than 5%.

Open Control System Designer

At the MATLAB command line, load a linearized model of the servomechanism, and open
Control System Designer in the root locus editor configuration.

load ltiexamples Gservo
controlSystemDesigner('rlocus',Gservo);

The app opens and imports Gservo as the plant model for the default control
architecture, Configuration 1.

In Control System Designer, a Root Locus Editor plot and input-output Step
Response open.

To view the open-loop frequency response and closed-loop step response simultaneously,
on the Views tab, click Left/Right.

Root Locus Design

The app displays Bode Editor and Step Response plots side-by-side.

12-67

12 Cciassical Control Design

_J’ Root Locus Editor for LoopTransfer_C | IOTransfer_r?y: step [

Root Locus Editor for LoopTransfer_C Step Response

800 IFrom. r To: @ @ @ E

600 [

400

200

Imag Axis
=
Amplitude

-200 | -
400 |

600

800 e 0
800 -600 400 -200 O 200 400 60O o 1 2 3 4 5 &

Real Axis Time (seconds)

In the closed-loop step response plot, the rise time is around two seconds, which does not
satisfy the design requirements.

To make the root locus diagram easier to read, zoom in. In the Root Locus Editor, right-
click the plot area and select Properties.

In the Property Editor dialog box, on the Limits tab, specify Real Axis and Imaginary
Axis limits from -500 to 500.

12-68

Root Locus Design

i

4\ Fropery Editor: Root Locus

| Lahels| Limnits | Optinns|

Feal fxis

Auto-Scale: [

Gmits: 500 Cto 500)
Irmaginary fxis

Auto-Scale: [

Gmits: 500 't 500)

Lirnit Stack

o | | e [e | S
Use the limit stack to store and retrieve axes limits,

| Close || Help |

Click Close.

Increase Compensator Gain

To create a faster response, increase the compensator gain. In the Root Locus Editor,
right-click the plot area and select Edit Compensator.

In the Compensator Editor dialog box, specify a gain of 20.

12-69

12 Cciassical Control Design

P

4\ Cormpensator Editar

Cormpensator

c -l D)
[

In the Root Locus Editor plot, the closed-loop pole locations move to reflect the new
gain value. Also, the Step Response plot updates.

12-70

Root Locus Design

_J Root Locus Editor for LoopTransfer_C

Imag Axis

Root Locus Editor for LoopTransfer_C

800

400 1

300

200

100

-100

=200 [

-300

-400

-500
-500

0 500
Real Axis

| ICTransfer_rly: step [

Amplitude

1.2

0.8

=
=]

0.4

0.2

Step Response
From: r To: y

0 0.05 041 0.1 02 025 03

Time (seconds)

The closed-loop response does not satisfy the settling time requirement and exhibits

unwanted ringing.

Increasing the gain makes the system underdamped and further increases lead to
instability. Therefore, to meet the design requirements, you must specify additional
compensator dynamics. For more information on adding and editing compensator
dynamics, see “Edit Compensator Dynamics” on page 12-93.

12-71

12 Cciassical Control Design

Add Poles to Compensator

To add a complex pole pair to the compensator, in the Root Locus Editor, right-click the
plot area and select Add Pole/Zero > Complex Pole. Click the plot area where you want
to add one of the complex poles.

[Root Locus Editor for LoopTransfer_C 1

Root Locus Editor for LoopTrans
500 ;

400 1

300 1

200 1

100

ag Axis

The app adds the complex pole pair to the root locus plot as red X’s, and updates the step
response plot.

In the Root Locus Editor, drag the new poles to locations near -140 + 260i. As you drag
one pole, the other pole updates automatically.

12-72

Root Locus Design

_J Root Locus Editar for LoopTransfer © =

Root Locus Editor for LoopTransfer_C
500 ;

400

300

200

100

Imag Axis

-100

-2 00

-300

-400 |]

-500
-500 0 500

Real Axis

Tip As you drag a pole or zero, the app displays the new value in the status bar, on the
right side.

12-73

12 ciassical Control Design

0
Real Axis

0.05 0.1
Time (seconds)

i) Drag this pole to the desired location., Current Location: -145 + 241 Darping: 0,515 Matural Frequency: 281 rad/s

Add Zeros to Compensator

To add a complex zero pair to your compensator, in the Compensator Editor dialog box,
right-click the Dynamics table, and select Add Pole/Zero > Complex Zero

12-74

Root Locus Design

4\ Com pensator Editor

Compensator
. 1
C - | =20 X
) ' 1 +0.0032s + (0.00345)"2)
Pole/Zero
Dynamics Edit Selected Dynamics
Type Lacation Damping Frequency
Complex Pole |-140 +/- 260i [0.474 295
Add Pole/Zero Real Pole

Right-click to add or delete pole

Complex Pole

Integrator

Real Zero
Complex Zero

Differentiator

Lead
Lag
Motch

Select a single row to edit values

The app adds a pair of complex zeros at -1 * i to your compensator

In the Dynamics table, click the Complex Zero row. Then in the Edit Selected

Dynamics section, specify a Real Part of -170 and an Imaginary Part of 430.

12-75

12 Cciassical Control Design

4 Compensator Editor EI@

Compensator
‘ (1 + 0.0016s + (0.00225)"2)

C - | =20 X
) (1 + 0.0032s + (0.00345)"2)

Pole/Zero
Dynamics Edit Selected Dynamics

Type Lacation Damping Frequency

Complex Pole |-140 +/- 2601 |0.474 295

Complex Zero |-170 +/- 4301 0.368 462

Matural Frequency 462,39
Damping 036766
Real Part -170 T
Imaginary Part 430

Right-click to add or delete poles/zeros

The compensator and response plots automatically update to reflect the new zero
locations.

12-76

Root Locus Design

Imag Axis

Root Locus Editor for LoopTransfer_C | | IOTransfer_r2y: step [
Root Locus Editor for LoopTransfer C Step Response
500 T
: From: r To: y
g 1.2 - -
400 |
300 | 1
200 |
0.8
100 T :
§ o
. =
E e H L) E
5 =E 067
[= %
=
-100 r <
200 o4
-300 |
0.2
400 r
500 ; o . . .
-500 0 500 0 0.05 0.1 0.15
Real Axis Time (seconds)

In the Step Response plot, the settling time is around 0.1 seconds, which does not
satisfy the design requirements.

Adjust Pole and Zero Locations

The compensator design process can involve some trial and error. Adjust the compensator
gain, pole locations, and zero locations until you meet the design criteria.

One possible compensator design that satisfies the design requirements is:

12-77

12 ciassical Control Design

* Compensator gain of 10
* Complex poles at -110 = 140i
* Complex zeros at -70 + 270i

In the Compensator Editor dialog box, configure your compensator using these values. In
the Step Response plot, the settling time is around 0.05 seconds.

| Reot Locus Editor for LoopTransfer_C [_J [O0Transfer_r2y: step]_
Root Locus Editor for LoopTransfer_C Step Response
500 :
: From: r To: y
: 1.2 :
400
300 1
200
08
100
)
e
< 3
0 =
& = 06
£ £
-100 <t
o900 04
-300
0.2
400
500 : 0 : : :
-500 0 500 0 0.02 0.04 0.06 0.08
Real Axis Time (seconds)

To verify the exact settling time, right-click the Step Response plot area and select
Characteristics > Settling Time. A settling time indicator appears on the response plot.

12-78

See Also

To view the settling time, move the cursor over the settling time indicator.

System: [OTransfer_r2y
WO rtoy

--------- Settling time (seconds): 0.0429 . —.

The settling time is about 0.043 seconds, which satisfies the design requirements.

References

[1] Clark, R. N. Control System Dynamics, Cambridge University Press, 1996.

See Also

Control System Designer | rlocusplot

More About

. “Edit Compensator Dynamics” on page 12-93

. “Control System Designer Tuning Methods” on page 12-4
. “Bode Diagram Design” on page 12-49

. “Nichols Plot Design” on page 12-80

12-79

12 Cciassical Control Design

Nichols Plot Design

12-80

Nichols plot design is an interactive graphical method of modifying a compensator to
achieve a specific open-loop response (loop shaping). Unlike “Bode Diagram Design” on
page 12-49, Nichols plot design uses Nichols plots to view the open-loop frequency
response. Nichols plots combine gain and phase information into a single plot, which is
useful when you are designing to gain and phase margin specifications. You can also use
the Nichols plot grid lines to estimate the closed-loop response (see ngrid). For more
information on Nichols plots, see nicholsplot.

Tune Compensator For DC Motor Using Nichols Plot Graphical
Design

This example shows how to design a compensator for a DC motor using Nichols plot
graphical tuning techniques.

Plant Model and Requirements

The transfer function of the DC motor plant, as described in “SISO Example: The DC
Motor”, is:

_ 1.5
s? + 14s + 40.02

For this example, the design requirements are:

* Rise time of less than 0.5 seconds

» Steady-state error of less than 5%

* Overshoot of less than 10%

* Gain margin greater than 20 dB

» Phase margin greater than 40 degrees

Open Control System Designer

At the MATLAB command line, create a transfer function model of the plant, and open
Control System Designer in the Nichols Editor configuration.

G = tf(1.5,[1 14 40.02]);
controlSystemDesigner('nichols',G);

Nichols Plot Design

The app opens and imports G as the plant model for the default control architecture,
Configuration 1.

In the app, the following response plots open:
* Open-loop Nichols Editor for the LoopTransfer C response. This response is the
open-loop transfer function GC, where C is the compensator and G is the plant.

* Step Response for the I0Transfer r2y response. This response is the input-output
transfer function for the overall closed-loop system.

Tip To open the open-loop Nichols Editor when Control System Designer is already
open, on the Control System tab, in the Tuning Methods drop-down list, select Nichols
Editor. In the Select Response to Edit dialog box, select an existing response to plot, or
create a New Open-Loop Response.

To view the open-loop frequency response and closed-loop step response simultaneously,
on the Views tab, click Left/Right.

P

4\ Control Systern Designer - I0Transfer_r2y: step

CONTROL SYSTEM VIEW

% H=| Tabs Position «

71 Shrink Tabs to Fit

o Custom = M Alphabetize
DOCUMENT TABS

P
L) |

The app displays the Nichols Editor and Step Response plots side-by-side.

Adjust Bandwidth
Since the design requires a rise time less than 0.5 seconds, set the open-loop DC

crossover frequency to about 3 rad/s. To a first-order approximation, this crossover
frequency corresponds to a time constant of 0.33 seconds.

12-81

12 Cciassical Control Design

To adjust the crossover frequency increase the compensator gain. In the Nichols Editor,
drag the response upward. Doing so increases the gain of the compensator.

_J’ Open-Loop Michols Editor for LoopTransfer © =

Open-Loop Nichols Editor for LoopTransfer_(
'ZD T T T

Open-Loop Gain (dB)

100 G.M.: Inf @ Inf
P.M.: Inf @ MaM
Stable loop
-110 ' : '
-180 -135 =90 -45 0

Open-Loop Phase (deqg)

As you drag the Nichols plot, the app computes the compensator gain and updates the
response plots.

Drag the Nichols plot upward until the crossover frequency is about 3 rad/s.

12-82

Nichols Plot Design

J Open-Loop Micheols Editor for LoopTransfer C

Open-Loop Nichols Editor for LoopTransfer_C
10 ; ; ;

Open-Loop Gain (dB)

_?’D G.M.I f
P.M.: 126 deg (@ 3.02 rad's)
efoop
-80 ' ' '

-180 -135 -90 -45 0
Open-Loop Phase (deg)

View Step Response Characteristics

To add the rise time to the Step Response plot, right-click the plot area, and select
Characteristics > Rise Time.

To view the rise time, move the cursor over the rise time indicator.

12-83

12 ciassical Control Design

_J [I0Transfer_r2y step]_

Step Response

FFDFII'I. r To: @ @ @ E

0.6

0.5

ystem: IOTransfer_r2y
| WO rtoy
| Rise time (seconds): 0.231

0.4

Amplitude
&

0.2

0.1

0 0.2 0.4 0.6 0.8
Time (seconds)

The rise time is around 0.23 seconds, which satisfies the design requirements.

Similarly, to add the peak response to the Step Response plot, right-click the plot area,
and select Characteristics > Peak Response.

12-84

Nichols Plot Design

]’ [OTransfer_rdy: step 1

Step Response
From: r To: @ @ ‘E" E
0.6 ———— . T T T |
.............................. [system: [OTransfer_r2y
| WO rtoy
05 F | Peak amplitude: 0.587
' | Overshoot (%): 3.54
| At time (seconds): 0.48
: :
04 :
I
o !
= I
2 . i
EL 0.3 :
< i
:
02 :
:
:
:
0.1 :
:
:
:
0 . 1 1 1 1
0 0.2 0.4 06 0.8
Time (seconds)

The peak overshoot is around 3.5%.
Add Integrator To Compensator

To meet the 5% steady-state error requirement, eliminate steady-state error from the
closed-loop step response by adding an integrator to your compensator. In the Nichols
Editor right-click in the plot area, and select Add Pole/Zero > Integrator.

12-85

12 Cciassical Control Design

_J Open-Loop MNichels Editor for LoopTransfer_C | I0Transfer_r2y: step [

Open-Loop Nichols Editor for LoopTransfer_{ Step Response
0 ' ' ' > From: r To: @ © O [2]
20
0 1
o -20
@
= 0.8
=
o
0 40 %
a =
= 06
(=] a
_I& -60 =
= <
S
U 0.4
-100
0.2
120 G.M. 206 dB @ 6.33 rad/s
P.M.: 65.7 deg @ 1.24 rad/s
Stable loop
-140 ' ' ' 0 ' ' '
-270 -225 -180 -135 -90 0 1 2 3 4
Open-Loop Phase (deqg) Time (seconds)

12-86

Adding an integrator produces zero steady-state error. However, changing the
compensator dynamics also changes the crossover frequency, increasing the rise time. To
reduce the rise time, increase the crossover frequency to around 3 rad/s.

Adjust Compensator Gain

To return the crossover frequency to around 3 rad/s, increase the compensator gain
further. Right-click the Nichols Editor plot area, and select Edit Compensator.

In the Compensator Editor dialog box, in the Compensator section, specify a gain of 99,
and press Enter.

Nichols Plot Design

The response plots update automatically.

_J Open-Loop Michels Editor for LoopTransfer_C | IOTransfer_r2y: step [
Open-Loop Nichols Editor for LoopTransfer_(Step Response
40 . ; ;
From: r To: y
1.4 - - -
20T
1.2
o — . —
—_— 1
m
Z 207
=
] o 08
= - " 5
g 2
- E
- < 0.6
= B0
@]
0.4 .
-80
-100 G.M.:115dB @ 6.33 rad/s 0.2r
P.M.: 38 deg @ 2.89 radis
Stable loop
-120 ' ! !) - : : -
=270 225 -180 -135 -90 0 1 2 3 4] 6
Open-Loop Phase (deg) Time (seconds)

The rise time is around 0.4 seconds, which satisfies the design requirements. However,
the peak overshoot is around 32%. A compensator consisting of a gain and an integrator
is not sufficient to meet the design requirements. Therefore, the compensator requires
additional dynamics.

Add Lead Network to Compensator

In the Nichols Editor, review the gain margin and phase margin for the current
compensator design. The design requires a gain margin greater than 20 dB and phase

12-87

12 Cciassical Control Design

12-88

margin greater than 40 degrees. The current design does not meet either of these
requirements.

To increase the stability margins, add a lead network to the compensator.

-100 G.M.:11.5dB @ 6.33 rad's
P..: 38 deg @ 2.89 rad/s
Stable loop
-120 : ' :
-270 -225 -180 -135 80

Open-Loop Phase (deg)

In the Nichols Editor, right-click and select Add Pole/Zero > Lead.

To specify the location of the lead network pole, click on the magnitude response. The app
adds a real pole (red X) and real zero (red 0) to the compensator and to the Nichols
Editor plot.

In the Nichols Editor, drag the pole and zero to change their locations. As you drag
them, the app updates the pole/zero values and updates the response plots.

To decrease the magnitude of a pole or zero, drag it towards the left. Since the pole and
zero are on the negative real axis, dragging them to the left moves them closer to the
origin in the complex plane.

Tip As you drag a pole or zero, the app displays the new value in the status bar, on the
right side.

Time (seconds

i) Drag this pole to the desired location., Current Location: -12.3

Nichols Plot Design

| Open-Loop Michols Editor for LoopTransfer_C |

Open-Loop Nichols Editor for LoopTransfer_t
40 T T T

Open-Loop Gain (dB)

As an initial estimate, drag the zero to a location around -7 and the pole to a location

around -11.

-100 G.M.: 143 dB @ 8.11 rad/s
P.M.: 44.5 deg @ 2.99 rad/s
Stable loop
-120 : : :
=270 =225 -180 -135 -90

Open-Loop FPhase (deg)

| I0Transfer_r2y: step |

Amplitude
]
o

1.4

1.2

=
fu

0.4

0.2

Step Response

From: Ir To: @ @ @ |E|

2 3 4
Time (seconds)

The phase margin meets the design requirements; however, the gain margin is still too

low.

Edit Lead Network Pole and Zero

To improve the controller performance, tune the lead network parameters.

In the Compensator Editor dialog box, in the Dynamics section, click the Lead row.

12-89

12 Cciassical Control Design

In the Edit Selected Dynamics section, in the Real Zero text box, specify a location of
-4.3, and press Enter. This value is near the slowest (left-most) pole of the DC motor

plant.

In the Real Pole text box, specify a value of -28, and press Enter.

4\ Com pensator Editor EI@
Compensator
- 1 +0.23s5)
C - 99 N
' s (1 + 0.0365)
Pole/Zero
Dynamics Edit Selected Dynamics
Type Laocation Damping Frequency
Integrator] -1]
Lead -4.3, -28 1 4.3, 28

Real Zero -4.3

Real Pole -2
Max Delta [
Phase (deg) 47.201

at Frequency 10573

Right-click to add or delete poles/zeros

When you modify a lead network parameters, the Compensator and response plots
update automatically.

In the app, in the Nichols Editor, the gain margin of 20.5 just meets the design
requirement.

12-90

Nichols Plot Design

To add robustness to the system, in the Compensator Editor dialog box, decrease the
compensator gain to 84.5, and press Enter. The gain margin increases to 21. 8, and the
response plots update.

_J Open-Loop Michols Editor for LoopTransfer C | IOTransfer_r2y: step |

Open-Loop Nichols Editor for LoopTransfer_{ Step Response
40 ' ' ' From: r To:y
1.2 T
20 |
0 1
= 20t
o
=) 0.8
=
4]
o -40 %
1= =
Q Z 06
(=] =
?:I 50 E
= <L
<)
=0 0.4
-100
0.2
120 G.M.:21.8 dB @ 16.4 rad/s
P.M.: 65.6 deg @ 2.95 rad/s
Stable loop .
-140 : : : o - : : :
=270 -225 -180 -135 90] 0.5 1 1.5
Open-Loop Phase (deqg) Time (seconds)

In Control System Designer, in the response plots, compare the system performance to
the design requirements. The system performance characteristics are:

* Rise time is 0.445 seconds.
* Steady-state error is zero.

12-91

12 Cciassical Control Design

12-92

* Overshoot is 3.39%.
* Gain margin is 21.8 dB.
* Phase margin is 65.6 degrees.

The system response meets all of the design requirements.

See Also

Control System Designer | nicholsplot

More About

. “Edit Compensator Dynamics” on page 12-93

. “Control System Designer Tuning Methods” on page 12-4
. “Bode Diagram Design” on page 12-49

. “Root Locus Design” on page 12-64

Edit Compensator Dynamics

Edit Compensator Dynamics

Using Control System Designer, you can manually edit compensator dynamics to
achieve your design goals. In particular, you can adjust the compensator gain, and you
can add the following compensator dynamics:

* Real and complex poles, including integrators

* Real and complex zeros, including differentiators

* Lead and lag networks

* Notch filters

You can add dynamics and modify compensator parameters using the Compensator Editor
or using the graphical Bode Editor, Root Locus Editor, or Nichols Editor plots.

Compensator Editor

To open the Compensator Editor dialog box, in Control System Designer, in an editor
plot area, right-click and select Edit Compensator. Alternatively, in the Data Browser,
in the Controllers section, right-click the compensator you want to edit and click Open

Selection.
4\ Compensator Editor EI@
Compensator
. . 1+ 0.2
C - | = (20 X
‘ : 1+01s)
Pole/Zero
Dynamics Edit Selected Dynamics
Type Location Darmping Frequency
Lead -5, -10 1 5, 10

12-93

12 Cciassical Control Design

The Compensator Editor displays the transfer function for the currently selected
compensator. You can select a different compensator to edit using the drop-down list. By
default, the compensator transfer function displays in the time constant format. You can
select a different format by changing the corresponding Control System Designer
preference.

In Control System Designer, on the Control System tab, click Preferences. In the
Control System Designer Preferences dialog box, on the Options tab, select a
Compensator Format.

i =

4\ Control System Designer Preferences E@

| Unitsl Time Dela],rsl St_l.rle| Options | Line Culﬂrsl

/EampensatarFarmat \

Select a compensator parameterization:

@ Time constant: DCx(l+Tzs) /(1 +Tps)

() Matural frequency: DCx (1 + sfwz) /(1 + s/wp)

\;:- Zerofpolefgain: Kx(s+2)}/(s+p) -‘/

Bode Options
Show plant/sensor poles and zeros

| ok || cancel || Hep || Apply |

To add poles and zeros to your compensator, in the Compensator Editor, right-click in the
Dynamics table and, under Add Pole/Zero, select the type of pole/zero you want to add.

12-94

Edit Compensator Dynamics

4 Compensator Editor EI@
Compensator
: . 1 +0.25)
C - | = |20 X
)] 1 +01s)
Pole/Zero
Dynamics Edit Selected Dynamics
Type Lacation Damping Frequency
Lead |-5, -10 il 5,10
Add Pole/Zero [}l Real Pole
Complex Pole
Integrator
Select a single row to edit values
Real Zero

Complex Zero

Differentiator

Lead

Lag

Right-click to add or delete poles/ze Motch

The app adds a pole or zero of the selected type with default parameters.

To edit a pole or zero, in the Dynamics table, click on the pole/zero type you want to edit.
Then, in the Edit Selected Dynamics section, in the text boxes, specify the pole and zero
locations.

To delete poles and zeros, in the Dynamics table, click on the pole/zero type you want to
delete. Then, right-click and select Delete Pole/Zero.

12-95

12 Cciassical Control Design

Graphical Compensator Editing

You can also add and adjust poles and zeros directly from Bode Editor, Root Locus Editor,
or Nichols Editor plots. Use this method to roughly place poles and zeros in the correct
area before fine-tuning their locations using the Compensator Editor.

To add poles and zeros directly from an editor plot, right-click the plot area and, under
Add Pole/Zero, select the type of pole/zero you want to add. In the editor plot, the app
displays the editable compensator poles and zeros as red X’s and 0’s respectively.

In the editor plots, you can drag poles and zeros to adjust their locations. As you drag a
pole or zero, the app displays the new value in the status bar, on the right side.

Time (seconds

i) Drag this pole to the desired location., Current Location: -12.3

To delete a pole or zero, right-click the plot area and select Delete Pole/Zero. Then, in
the editor plot, click the pole or zero you want to delete.

Bode Editor for LoopTransfer_C

80

-100 | G.M.: 127 dB
Freq: 8.82 rad/s
Stable loop

-150

12-96

Edit Compensator Dynamics

Poles and Zeros

You can add the following poles and zeros to your compensator:

* Real pole/zero — Specify the pole/zero location on the real axis

* Complex poles/zeros — Specify complex conjugate pairs by:

* Setting the real and imaginary parts directly.

* Setting the natural frequency, w,, and damping ratio, €.

* Integrator — Add a pole at the origin to eliminate steady-state error for step inputs
and DC inputs.

» Differentiator — Add a zero at the origin.

Lead and Lag Networks

You can add lead networks, lag networks, and combination lead-lag networks to your

compensator.

Network |Description Use This To

Type

Lead One pole and one zero on the |¢ Increase stability margins

negative real axis, with the
zero having a lower natural
frequency

Increase system bandwidth
Reduce rise time

network and a lag network

Lag One pole and one zero on the |+ Reduce high-frequency gain
negative real axis, with the + Increase phase margin
pole having a lower natural
frequency * Improve steady-state accuracy
Lead-Lag |A combination of a lead Combine the effects of lead and lag

networks

To add a lead-lag network, add separate lead and lag networks.

To configure a lead or lag network for your compensator, use one of the following options:

» Specify the pole and zero locations. Placing the pole and zero further apart increases
the amount of phase angle change.

12-97

12 Cciassical Control Design

12-98

» Specify the maximum amount of phase angle change and the frequency at which this
change occurs. The app automatically computes the pole and zero locations.

When graphically changing pole and zero locations for a lead or lag compensator, in the
editor plot, you can drag the pole and zeros independently.

Notch Filters

If you know that your system has disturbances at a particular frequency, you can add a
notch filter to attenuate the gain of the system at that frequency. The notch filter transfer
function is:

s 4+ 28 wps + w2
s% 4 28,05 + w3

where

* W, is the natural frequency of the notch.

* The ratio &,/&; sets the depth of the notch.

To configure a notch filter for your compensator, in the Compensator Editor dialog box,
you can specify the:

* Natural Frequency — Attenuated frequency

* Notch Depth and Notch Width

* Damping for the complex poles and zeros of the transfer function.

When graphically editing a notch filter, in the Bode Editor, you can drag the bottom of the

notch to adjust w, and the notch depth. To adjust the width of the notch without changing
w, or the notch depth, you can drag the edges of the notch.

See Also

Adjust notch width
>

Adjust natural frequency
>

Adjust notch depth

See Also

Control System Designer

More About

. “Bode Diagram Design” on page 12-49
. “Root Locus Design” on page 12-64

. “Nichols Plot Design” on page 12-80

12-99

12 Cciassical Control Design

Design Compensator Using Automated Tuning Methods

This example shows how to tune a compensator using automated tuning methods in
Control System Designer.

Select Tuning Method

To select an automated tuning method, in Control System Designer, click Tuning

Methods.
4\ Contral Systern Designer - Bode Editor for LoopTransfer_C EI@
[COMTROL S%STEM]

o B 0=

© @ g

Cpen Save Ediit huttimoce] Tuning Store Retrieve Compare Export Preferences
Session Session Architecture Configuration hethods
FILE ARCHITECTURE C 1
Data Browser ® br LoopTransfer_C .

- —"(\9\,_ Bode Editor _p - |7
¥ Controllers and Fixed Blocks = ___3\9' Edit feedback loop using Bode plot s Editor for LoopTransfer_C
F g
C ‘; :"(\9\,_ Closed-Loop Bode Editor
G g 3\9' Edit closed loop using Bode plot

=
H g- ﬁ Root Locus Editor
g '\} Edit compensators using root locus plot
w Designs = 7@ Michols Editor
= + Edit feedback loop using Michols plot
PID PID Tuning b 0 0.5 1
Ture PID compensator using robust response time or classical methods F
| | Real Axis
r e Optimization Based Tuning
w Responses I x|: ',{Z Optimize compensator parameters to satisfy design requirements
LoopTransfer_C - LQG Synthesi
— T ynthesis . .
10Transfer_r2y fz Qzdt Obtain feedback compensator using Linear-Quadratic-Gaussian design
10Transfer_r2u =
I0Transfer_duy | \ Loop Shaping g
10Transfer_dy2y il Find feedback compensator to match specified open-loop shape
» Preview IMC Internal Model Control (IMC) Tuning
K Obtain feedback compensator using IMC design j
& J
05 | | | | | | | | |
0 0.1 02 03 0.4 05 0.6 0.7 08 09 1

12-100

Design Compensator Using Automated Tuning Methods

Select one of the following tuning methods:

* PID Tuning — Tune PID gains to balance performance and robustness or use
classical tuning formulas.

* Optimization Based Tuning — Optimize compensator parameters using design
requirements implemented in graphical tuning and analysis plots (requires Simulink
Design Optimization software).

* LQG Synthesis — Design a full-order stabilizing feedback controller as a linear-
quadratic-Gaussian (LQG) tracker.

* Loop Shaping — Find a full-order stabilizing feedback controller with a specified
open-loop bandwidth or shape (requires Robust Control Toolbox software).

* Internal Model Control (IMC) Tuning — Obtain a full-order stabilizing
feedback controller using the IMC design method.

Select Compensator and Loop to Tune

In the dialog box for your selected tuning method, in the Compensator section, select
the compensator and loop to tune.

Cormpensator

w_Select Loop to Tune

LoopTransfer_C -

Add Mew Loop...

* Compensator — Select a compensator to tune from the drop-down list. The app
displays the current compensator transfer function.

* Select Loop to Tune — Select an existing open-loop transfer function to tune from
the drop-down list. You can select any open-loop transfer function from the Data
Browser that includes the selected compensator in series

* Add New Loop — Create a new loop to tune. In the Open-Loop Transfer Function
dialog box, select signals and loop openings to configure the loop transfer function.

12-101

12 ciassical Control Design

12-102

Note For optimization-based tuning, you do not specify the compensator and loop to tune
in this way. Instead, you define the compensator structure and select compensator and
prefilter parameters to optimize. For more information, see “Select Tunable Compensator
Elements” (Simulink Design Optimization).

PID Tuning

Using Control System Designer, you can automatically tune any of the following PID
controller types:

P — Proportional-only control

I — Integral-only control

PI — Proportional-integral control

PD — Proportional-derivative control

PDF — Proportional-derivative control with a low-pass filter on the derivative term
PID — Proportional-integral-derivative control

PIDF — Proportional-integral-derivative control with a low-pass filter on the derivative
term

To open the PID Tuning dialog box, in Control System Designer, click Tuning
Methods, and select PID Tuning.

Design Compensator Using Automated Tuning Methods

- lueaing OO0
Cormpensator

w Select Loop to Tune

|Ln:n:||:|Trar'|sfer_C v|

[Sdd Mew Loop..,]

Specifications

Tuning methoe: |R|:|bust response time -

Cortraller Type: &P 1 QP T PD T PID
[T Deszign with first order derivative fitter

Design moce: |Time "’|
« : : g — | 0.3161 | %)
Shoteear Respons= Tim e [(seconds) Faster
: : : ——— | 0.6 v| Reset
Aogressie Trn=ient Betmwior Riobiutst Parameters

’ Update Compensator ” Help]

Robust Response Time

The robust response time algorithm automatically tunes PID parameters to balance
performance and robustness. Using the robust response time method, you can:

* Tune all parameters for any type of PID controller.
* Design for plants that are stable, unstable, or integrating.

To tune your compensator using this method:

1 In the PID Tuning dialog box, in the Specifications section, in the Tuning method
drop-down list, select Robust response time.

12-103

12 ciassical Control Design

e
LS R R R

Tuning method: | Robust response time ‘>|

Cortroller Type: 0P 0| P UPD @ FID
[T Design with first order derivative fitter

Design mode: |Time -
« : : iy —— 03161 |3)
Sloreear Responss Time [s=conds) Faster
—_— 0.6 -| Reset
Aggressine Transient Bztavior Fiobust Parameters
Update Compensataor] ’ Help]

2 Select a Controller type. If you choose PD or PID, check Design with first order
derivative filter to design a PDF or PIDF controller, respectively.

Tip Adding derivative action to the controller gives the algorithm more freedom to
achieve both adequate phase margin and faster response time.

3 In the Design mode drop-down list, select one of the following:

* Time — Specify controller performance using time-domain parameters.

12-104

Design Compensator Using Automated Tuning Methods

Specifications
Tuning method: |Robust response time 7

Controller Type: &P &1 QP PO T FD
[T Design with first order derivative fiter

De=zign mode: | Time -
A t [- { |2 - 4@
Showwer Respons= Time [seconds) Faster
—_—tt—t— 0.6 v FResst
Aogresshie Transient Bzhaviar Robust Farameters

’ Update Compensator ” Help]

* Response Time — Specify a faster or slower controller response time. To
modify the response time by a factor of ten, use the left or right arrows.

* Transient Behavior — Specify the controller transient behavior. You can
make the controller more aggressive at disturbance rejection or more robust
against plant uncertainty.

Frequency — Specify controller performance using frequency-domain
parameters.

12-105

12 ciassical Control Design

Specifications
Tuning method: |Raobust response time

Controller Type: &P | &P & PD O PID
[Design with first order derivative fiter

Design made: |Frequency ~
« | . f =it — 6,326 @
0Az3E Bandwidth (ad/fs) 10
l l l l L l l 60 Reset
i} Phaze Margin idegl = Parameters
Update Cormpensator | | Help |

* Bandwidth — Specify the closed-loop bandwidth of the control system. To
produce a faster response time, increase the bandwidth. To modify the

bandwidth by a factor of ten, use the left or right arrows.

* Phase Margin — Specify a target phase margin for the system. To reduce
overshoot and create a more robust controller, increase the phase margin.

4 To apply the specified controller design to the selected compensator, click Update

Compensator.

Note If you previously specified the controller structure manually or using a
different automated tuning method, that structure is lost when you click Update

Compensator.

5 By default, the app automatically computes controller parameters for balanced
performance and robustness. To revert to these default parameters at any time, click

Reset Parameters.

Classical Design Formulas

You can use classical PID design formulas to tune B, PI, PID, and PIDF controllers. These

design formulas:

* Require a stable or integrating plant. For more information about the effective plant
seen by the compensator, see “Effective Plant for Tuning” on page 12-6.

12-106

Design Compensator Using Automated Tuning Methods

* Cannot tune the derivative filter. If you select a PIDF controller, the classical design
methods set the filter time constant to Td/10, where Td is the tuned derivative time.

To tune your compensator using a classical method:

1 In the PID Tuning dialog box, in the Specifications section, in the Tuning method
drop-down list, select Classical design formulas.

sSpecifications
@ning methock | Classical design formulas ")
|
Cortroller Type: P QP T FID = PID with derivative fiter

Formula: Approximate MIGO frequency response -

Update Compensator ” Help]

2 Select a Controller type.

Tip Adding derivative action to the compensator gives the algorithm more freedom
to achieve both adequate phase margin and faster response time.

3 In the Formula drop-down list, select a classical design formula.

Specifications

Tuning method: | Classical design formulas -
Controller Type: &P QD Pl T PID 7 PID with derivative fitter
Farmula; Approximate MIGO frequency response

Approximate MIGO frequency Fespanse
Approximate MIGO step respanse
Chien-Hrones-Reswick
Skogestad IMC
Fiegler-Michols frequency response
[Fiegler-Michals step response

* Approximate MIGO frequency response — Compute controller parameters
using closed-loop, frequency-domain, approximate M-constrained integral gain
optimization (see [1]).

12-107

12 ciassical Control Design

12-108

* Approximate MIGO step response — Compute controller parameters using
open-loop, time-domain, approximate M-constrained integral gain optimization
(see [1]).

* Chien-Hrones-Reswick — Approximate the plant as a first-order model with a
time delay, and compute PID parameters using a Chien-Hrones-Reswick lookup
table for 0% overshoot and disturbance rejection (see [2]).

* Skogestad IMC — Approximate the plant as a first-order model with a time
delay, and compute PID parameters using Skogestad design rules (see [3]).

Note This method is different from selecting “Internal Model Control Tuning” on
page 12-112 as the full-order compensator tuning method.

o Ziegler-Nichols frequency response — Compute controller parameters
from a Ziegler-Nichols lookup table, based on the ultimate gain and frequency of
the system (see [2]).

* Ziegler-Nichols step response — Approximate the plant as a first-order
model with a time delay, and compute PID parameters using the Ziegler-Nichols
design method (see [2]).

4 Apply the specified controller design to the selected compensator. Click Update
Compensator.

Note If you previously specified the controller structure manually or using a
different automated tuning method, that structure is lost when you click Update
Compensator.

Optimization-Based Tuning

Optimization-based tuning is available only if you have Simulink Design Optimization
software installed. You can use this method to design control systems for LTI models by
optimizing controller parameters.

Note Optimization-based tuning only changes the values of controller parameters and
not the controller structure itself. For information on adding or removing compensator
elements, see “Edit Compensator Dynamics” on page 12-93.

To design a controller using optimization-based tuning:

Design Compensator Using Automated Tuning Methods

Define the structure of the compensators you want to tune. Typically, you design an
initial controller either manually or using a different automated tuning method.

Open the Response Optimization dialog box. In Control System Designer, click
Tuning Methods, and select Optimization-Based Tuning.

Select compensator parameters to optimize. On the Compensators tab, in the
Optimize column, select the compensator elements to tune.

You can optimize elements for any compensator listed in the Data Browser. To select
all elements for a given compensator, select the check box that corresponds to that
compensator.

Rezponsze Op
Overview| Compensators | Design Requirements | Optimization

Select compensators to optimize

[] Optimize Compensator elements Value Initial guess

[F

Gain 1 1
0 Dk

Gain 51135 51

eal Zero -3.6 -3.6

[Real Z 36525 36

[Real Pole (Integrator) 0 0

Any elements that you do not select in the Optimize column remain at their current
values during optimization.

For each compensator element, specify:
+ Initial guess — Starting point for the optimization algorithm. To use the current

element Value as the Initial guess, click a row in the table, and click Use Value
as Initial guess.

* Minimum and Maximum bounds on the element value. The optimization
constrains the search results to the specified range.

+ Typical value scaling factor for normalizing the compensator elements.

12-109

12 ciassical Control Design

12-110

5 On the Design Requirements tab, in the Optimize column, select the design
requirements to satisfy during optimization.

Each design requirement is associated with a plot of a specific response in the Data
Browser. To select all requirements for a given response, select the corresponding
check box.

nesponse Uptimization

| Gvewiml Compensators| Design Requirements | Optimization

Select design requirement to satisfy

[] Optimize Response plot
[IO0Transfer_r2y
[Step Response Step response bo
C-_ _-) LoopTransfer_C
Bode Editor for LoopTransfer_C Lower gain lim
= Bode Editer for LoopTransfer_C G = 20 (db)

For information on adding and editing design requirements, see “Design
Requirements” on page 12-9.

6 (optional) Configure optimization options. On the Optimization tab, click
Optimization options.

7 Click Start Optimization.
For examples of optimization-based tuning, see “Optimize LTI System to Meet Frequency-

Domain Requirements” (Simulink Design Optimization) and “Design Optimization-Based
PID Controller for Linearized Simulink Model (GUI)” (Simulink Design Optimization).

LQG Synthesis

Linear-quadratic-Gaussian (LQG) control is a technique for designing optimal dynamic
regulators and setpoint trackers. This technique allows you to trade off performance and
control effort, and to take into account process disturbances and measurement noise.

Design Compensator Using Automated Tuning Methods

LQG synthesis generates a full-order feedback controller that guarantees closed-loop
stability. The designed controller contains an integrator, which guarantees zero steady-
state error for plants without a free differentiator.

Specifications

Contraller response: : : ¥ i :
Pggnessine Robust
Measurement noise: : : % : :
tmall Lange
Desired contraller order: | 8 |3
1 E}
Update Cormpensator | | Help |

To design an LQG controller:

1

Open the LQG Synthesis dialog box. In Control System Designer, click Tuning
Methods, and select LQG Synthesis.

Specify the transient behavior of the controller using the Controller response slider.
You can make the controller more aggressive at disturbance rejection or more robust
against plant uncertainty. If you believe your model is accurate and that the
manipulated variable has a large enough range, an aggressive controller is
preferable.

Specify an estimate of the level of output measurement noise for your application
using the Measurement noise slider. To produce a more robust controller, specify a
larger noise estimate.

Specify your controller order preference using the Desired controller order slider.
The maximum controller order is dependent on the effective plant dynamics.

Apply the specified controller design to the selected compensator. Click Update
Compensator.

12-111

12 Cciassical Control Design

12-112

Note If you previously specified the controller structure manually or using a
different automated tuning method, that structure is lost when you click Update
Compensator.

For an example of LQG synthesis using Control System Designer, see “Design LQG
Tracker Using Control System Designer” on page 12-175.

Loop Shaping

If you have Robust Control Toolbox software installed, you can use loop shaping to design
SISO compensators in Control System Designer. Loop shaping generates a stabilizing
feedback controller to match, as closely as possible, a target loop shape. You can specify
this loop shape as a bandwidth or an open-loop frequency response.

To design a controller using loop shaping:

1 Open the Loop Shaping dialog box. In Control System Designer, click Tuning
Methods, and select Loop Shaping.

2 Select one of the following tuning preferences:
+ Target bandwidth — Specify a Target open-loop bandwidth, wj, to produce a
loop shape of the specified bandwidth over an integrator, %.

* Target loop shape — Specify the Target open-loop shape as a tf, ss, or zpk
object. To limit the frequencies over which to match the target loop shape, specify
the Frequency range for loop shaping as a two-element row vector.

3 Specify your controller order preference using the Desired controller order slider.
The maximum controller order is dependent on the effective plant dynamics.

4 Apply the specified controller design to the selected compensator. Click Update
Compensator.

Note If you previously specified the controller structure manually or using a
different automated tuning method, that structure is lost when you click Update
Compensator.

Internal Model Control Tuning

Internal model control (IMC) uses a predictive model of the plant dynamics to compute
control actions. IMC design generates a full-order feedback controller that guarantees

Design Compensator Using Automated Tuning Methods

closed-loop stability when there is no model error. The tuned compensator also contains
an integrator, which guarantees zero steady-state offset for plants without a free
differentiator. You can use this tuning method for both stable and unstable plants.

To design an IMC controller:

1 Select and configure the IMC control architecture. In Control System Designer,
click Edit Architecture.

In the Edit Architecture dialog box, select the fifth control architecture, and import
the plant model, G1, predictive model, G2, and disturbance model Gd.

Edit Architecture - Configuration 5
Select

Control Architecture: dL. Gd
du
e u ’l\
o uC._.&_' G1 ») J
ym
G2 »
Blocks
ldentifier Block Mame Value
C | | |<1xt zpk= |
F I | |<1xt zpk= |
= o1 e | &
G2 |G2 | |<1}EI. 55 | &I
Gd |Gd | |<1}CL 55> | &I
| ok || cancel || Help |
Click OK.

12-113

12 ciassical Control Design

2 Open the Internal Model Control (IMC) Tuning dialog box. In Control System
Designer, click Tuning Methods, and select Internal Model Control (IMC)
Tuning.

internal Model Lontrol E0MLY funng R
Compensator

w Select Loop to Tune

LoopTransfer_C -

Sdd Mew Loap...

Specifications

Dominant clozed-loop time constant: |1

Desired contraller arder: : y y t @ s
1 5

| Update Compensator |’ Help]

3 Specify a Dominant closed-loop time constant. The default value is 5% of the
open-loop settling time. In general, increasing this value slows down the closed-loop
system and makes it more robust.

4 Specify your controller order preference using the Desired controller order slider.
The maximum controller order is dependent on the effective plant dynamics.

5 Apply the specified controller design to the selected compensator. Click Update
Compensator.

Note If you previously specified the controller structure manually or using a
different automated tuning method, that structure is lost when you click Update
Compensator.

12-114

See Also

For an example of IMC tuning, see “Design Internal Model Controller for Chemical
Reactor Plant” on page 12-160.

References

[1] Astrém, K. J. and Hagglund, T. “Replacing the Ziegler-Nichols Tuning Rules.” Chapter
7 in Advanced PID Control, Research Triangle Park, NC: Instrumentation,
Systems, and Automation Society, 2006, pp. 233-270.

[2] Astrém, K. J. and Hagglund, T. “Ziegler-Nichols' and Related Methods.” Section 6.2 in
Advanced PID Control, Research Triangle Park, NC: Instrumentation, Systems,
and Automation Society, 2006, pp. 167-176.

[3] Skogestad, S., “Simple analytic rules for model reduction and PID controller tuning.”
Journal of Process Control, Vol. 13, No. 4, 2003, pp. 291-309.

See Also

Control System Designer

More About

. “Control System Designer Tuning Methods” on page 12-4
. “Design Internal Model Controller for Chemical Reactor Plant” on page 12-160
. “Design LQG Tracker Using Control System Designer” on page 12-175

12-115

12 ciassical Control Design

Analyze Designs Using Response Plots

This example shows how to analyze your control system designs using the plotting tools in
Control System Designer. There are two types of Control System Designer plots:

* Analysis plots — Use these plots to visualize your system performance and display
response characteristics.

» Editor plots — Use these plots to visualize your system performance and interactively
tune your compensator dynamics using graphical tuning methods.

Analysis Plots

Use analysis plots to visualize your system performance and display response
characteristics. You can also use these plots to compare multiple control system designs.
For more information, see “Compare Performance of Multiple Designs” on page 12-126.

To create a new analysis plot, in Control System Designer, on the Control System tab,
click New Plot, and select the type of plot to add.

12-116

Analyze Designs Using Response Plots

Control System Designer - Bode Editor for LoopTransfer_C

[CONTROL SYSTEM 0 0OR
i = = = o
E E —_ Ef._.' 35 @l E: [& % . ﬁ
Save Edit Muttimode! Tuning New | Store Retrieve Compar
e FILE ARCHITECTURE ING
Data Segeces @ Bode Editor fol Lo Root Lo
i New Step L b
w Controllers and Fixed Blocks | /—_ I} Ro
F Bodg E| Lo 3
c =0 T F—"_| NewBode 5l
=407 |®© 1t
= |' l\ Mew Impulse E
: - -
: 0
[, 60 : g
w Designs g 8 MNew Nyquist E 1
5 801 — -2
g ' % Mew Nichols
i G.M.: inf -
-0 Freq: Inf|
Stable Idop \J\]\ New Singular Value
-120 : I
¥ Responses 0 —] P e e
LoopTransfer_C ~ ~. X
I0Transfer_r2y e x
I0Transfer_r2u = _1; Gx-e:. New I/O Pole/Zero Map
£y
I0Transfer_duZy i \ Bt) .
I0Transfer_dy2y < B -80 Y (3
: =
w Preview C 435 g— 0
. inf <

In the new plot dialog box, specify an existing or new response to plot.

12-117

12 Cciassical Control Design

Note Using analysis plots, you can compare the performance of multiple designs stored
in the Data Browser. For more information, see “Compare Performance of Multiple
Designs” on page 12-126.

Plot Existing Response

To plot an existing response, in the Select Response to Plot drop-down list, select an
existing response from the Data Browser. The details for the selected response are
displayed in the text box.

To plot the selected response, click Plot.
Plot New Response

To plot a new response, specify the following:
» Select Response to Plot — Select the type of response to create.
* New Input-Output Transfer Response — Create a transfer function response

for specified input signals, output signals, and loop openings.

* New Open-Loop Response — Create an open-loop transfer function response at a
specified location with specified loop openings.

* New Sensitivity Transfer Response — Create a sensitivity response at a
specified location with specified loop openings.

* Response Name — Enter a name in the text box.
» Signal selection boxes — Specify signals as inputs, outputs, or loop openings by
clicking +.1f you open Control System Designer from:

* MATLAB — Select a signal using the Architecture block diagram for reference.

* Simulink — Select an existing signal from the current control system architecture,
or add a signal from the Simulink model.

Use tl} {} and * to reorder and delete signals.

To add the specified response to the Data Browser and create the selected plot, click
Plot.

12-118

Analyze Designs Using Response Plots

Editor Plots

Use editor plots to visualize your system performance and interactively tune your
compensator dynamics using graphical tuning methods.

To create a new editor plot, in Control System Designer, on the Control System tab,
click Tuning Methods, and select one of the Graphical Tuning methods.

-

_‘L Control System Designer - I0Transfer_r2y: step

[CONTROL SYSTEM VIEW

’E ﬁ _g | = ! = L
Open Save Edit Muttimodel Tuning New Store Retrieve Compare Export Preferences
FILE | ARCHITECTURE
Data Browser ®
. T -_| Bode Editor
pacontlerEndbedi ek _x Edit feedback loop using Bode plot
F
C :"AQ__ Closed-Loop Bode Editor
_3&\9' Edit closed loop using Bode plot
ﬁ Root Locus Editor
'\} Edit compensators using root locus plot
¥ Designs +/¢ Nichols Editor

i T Edit feedback loop using Michols plot

PID PID Tuning
Tune PID compensator using robust response time or classical methods

N Optimization Based Tuning
* Optimize compensator parameters to satisfy design requirements

w Responses

For examples of graphical tuning using editor plots, see:

* “Bode Diagram Design” on page 12-49
* “Root Locus Design” on page 12-64
* “Nichols Plot Design” on page 12-80

For more information on interactively editing compensator dynamics, see “Edit
Compensator Dynamics” on page 12-93.

12-119

12 ciassical Control Design

Plot Characteristics

On any analysis plot in Control System Designer:

To see response information and data values, click a line on the plot.

Systern: IOTransfer_r2y
WO rtoy

Jub}
~
= Time (seconds): 0.193
= / Amplifude: 0.658
E
< T
0.5

—
o
{1

Time (seconds)

To view system characteristics, right-click anywhere on the plot, as described in
“Frequency-Domain Characteristics on Response Plots” on page 8-10.

12-120

Analyze Designs Using Response Plots

0.06
0.04 Systems r |
o Characteristics ! Peak Response
-g Multimodel Display Settling Time
é_ 0.02 Design Requirernents *
<L Grid
Mormalize
D Fu” UIEW ._
Properties ...
-0.02
_D D4 | | 1 | | | | |
0 02 04 0.6 0.8 1 12 14 1.8
Time (seconds)
Plot Tools

Mouse over any analysis plot to access plot tools at the upper right corner of the plot.

12-121

12 Cciassical Control Design

Step Response
From: r To:y (@ @ "ﬂ? E

1.5 T T

@ and @ — Zoom in and zoom out. Click to activate, and drag the cursor over the
region to zoom. The zoom icon turns dark when zoom is active. Right-click while zoom
is active to access additional zoom options. Click the icon again to deactivate.

Step Response

From:r To:y @) "ﬂ? E
é)

Loom Out Shift-Click

Reset to Original View

ZM ¥ Unconstrained Zoom

Haorizontal Zoom

Vertical Zoom

/)

@ — Pan. Click to activate, and drag the cursor across the plot area to pan. The pan
icon turns dark when pan is active. Right-click while pan is active to access additional
pan options. Click the icon again to deactivate.

12-122

Analyze Designs Using Response Plots

E — Legend. By default, the plot legend is inactive. To toggle the legend on and off,
click this icon. To move the legend, drag it to a new location on the plot.

To change the way plots are tiled or sorted, use the options on the View tab.

r

4\ Control Systern Designer - Bode Editor for LoopTra

CONTROL SYSTEM BODE EDITOR

El 1] LeftRight % F=| Tabs Position ~

Top/Bottom M Shrink Tabs to Fit
E Float

Single
£ Custom « M Alphabetize
TILES COCUMENT TABS
Data Bro) - *2 | Bode Editor for LoopTransfer_C | Root Locus Edi

Design Requirements

You can add graphical representations of design requirements to any editor or analysis
plots. These requirements define shaded exclusion regions in the plot area.

12-123

12 ciassical Control Design

n

10

Imag Axis
[[]

L)]

-10

i
i Ln

12-124

Root Locus Editor for LoopTransfer_C

—

8 5 -4 -2 0 2
Real Axis

Use these regions as guidelines when analyzing and tuning your compensator designs. To
meet a design requirement, your response plots must remain outside of the
corresponding shaded area.

To add design requirements to a plot, right-click anywhere on the plot and select Design
Requirements > New.

See Also

A\ New Design Requirerment E@
Design requirernent type:| Settling time -

Design requirerment pararmeters

Settling time < 1 seconds

| ok || Close || Help |

In the New Design Requirement dialog box, specify the Design requirement type, and
define the Design requirement parameters. Each type of design requirement has a
different set of parameters to configure. For more information on adding design
requirements to analysis and editor plots, see “Design Requirements” on page 12-9.

See Also

More About

. “Control System Designer Tuning Methods” on page 12-4
. “Compare Performance of Multiple Designs” on page 12-126
. “Design Requirements” on page 12-9

12-125

12 ciassical Control Design

Compare Performance of Multiple Designs

12-126

This example shows how to compare the performance of two different control system
designs. Such comparison is useful, for example, to see the effects of different tuning
methods or compensator structures.

Store First Design

In this example, the first design is the compensator tuned graphically in “Bode Diagram
Design” on page 12-49.

After tuning the compensator with this first tuning method, store the design in Control
System Designer.

On the Control System tab, in the Designs section, click %! Store. The stored design
appears in the Data Browser in the Designs area.

Compare Performance of Multiple Designs

-

4\ Control Systermn Designer - Bode Editor for LoopTransfer_C

CONTROL SY'STEM BODE EDITOR
|
N = T il
Open Save Edit Multimodel Tuning Mew

Session Session Architecture Configuration Methods ~ Plot = °

FILE | ARCHITECTURE | TUNING METHODS |ANALYSIS | DESIGNS |RESULTS |FPREFEREN
Data Browser ® _J Bode Editor for LoopTransfer T = 1 | Root Loc
w Controllers and Fixed Blocks
= Bode Editor for LoopTransfer_C
100 100
c
50
T
e b
w Designs 1_ 2 50
[Design : 4
esign E
g -100
i G.M.:218dB . 2
-150 | Freq: 16.4 rad/s =
Stable loop g 'g:
-200 o
w Responses 0 E
LoopTransfer_C -
[0Tra

The stored design contains the tuned values of the controller and filter blocks. The app
does not store the values of any fixed blocks.

To rename the stored design, in the Data Browser, double-click the design, and specify a
new name.

Compute New Design
On the Control System tab, tune the compensator using a different tuning method.

Under Tuning Methods, select PID Tuning.

12-127

12 ciassical Control Design

To design a controller with the default Robust response time specifications, in the
PID Tuning dialog box, click Update Compensator.

Compare New Design with Stored Design

Update all plots to reflect both the new design and the stored design.

On the Control System tab, click & Compare.

-

4\ Control Systern Designer - I0Transfer_r2y: step
[CONTROL SYSTEM Q35 L&
& = I % =S S (P
oD B = ZH
Open Save Edit Multimodel Tuning New Store i Compare Export Prefere
Session Session Architecture Configuration Methods + Plot = -
FILE ARCHITECTURE TUNING METHODS |AMALYSIS B iCompareDesigns X =)
Data Browser @ | 10Transfer_r2y: step | Current Design
— e E?Design'l —
w Controllers and Fixed Blocks
a
F 2
‘ 1.2 T T L]
-
I I TTTT TP P PY ATTPRTIOY k ——————
w Designs
4?—- —

In the Compare Designs dialog box, the current design is checked by default. To
compare a design with the current design, check the corresponding box. All analysis plots
update to reflect the checked designs. The blue trace corresponds to the current design.
Refer to the plot legend to identify the responses for other designs.

12-128

Compare Performance of Multiple Designs

| IOTransfer_r2y: step |

Step Response

From: r To: y
]2 T T T T T T T T

= |OTransfer_r2y
IOTransfer_r2y: Designi

0.8

Amplitude

0.4

0.2

0 02 0.4 0.6 0.8 1 12 1.4 1.6 1.8
Time (seconds)

To compare a stored design with the current design, the sample times of the current
design and stored design must be the same. To modify the sample time of the current
design to match that of a stored design, on the Control System tab, select Edit
Architecture > Sample Time Conversion. Then, in the Sample Time Conversion dialog
box, specify the sample time and a rate conversion methods for each block in the
architecture.

12-129

12 Cciassical Control Design

Restore Previously Saved Design

Under some conditions, it is useful to restore a previously stored design. For example,
when designing a compensator for a Simulink model, you can write the current
compensator values to the model (see “Update Simulink Model and Validate Design”
(Simulink Control Design)). To test a stored compensator in your model, first restore the
stored design as the current design.

To do so, in Control System Designer, click 5l Retrieve. Select the stored design that
you want to make current.

-

4\ Control Systemn Designer - I0Transfer_r2y: step

[CONTROL SYSTEM

i O (R S A N =

Open Save Edit Multimodel Tuning New Store| Retrieve Compare
Session Session Architecture Configuration Methods ~ Plot «
FILE ARCHITECTURE TUNING METHODS |ANALYSIS

Data Browser ® | 10Transfer_r2y: step |

Prefererces

Export .

Designl

w Controllers and Fixed Blocks

E
C

Design2 e
R

Dresign3

As with design comparison, to retrieve a stored design, the sample times of the current
design and stored design must be the same.

12-130

See Also

Note The retrieved design overwrites the current design. If necessary, store the current
design before retrieving a previously stored design.

See Also

More About

. “Analyze Designs Using Response Plots” on page 12-116
. “Control System Designer Tuning Methods” on page 12-4

12-131

12 Cciassical Control Design

Design Hard-Disk Read/Write Head Controller

12-132

This example shows how to design a computer hard-disk read/write head position
controller using classical control design methods.

Hard Disk Drive

—_

/ﬁi;;; \\ﬂ

,-/.-"f Dizk D ive WMotor

{~=

Create Read/Write Head Model
Using Newton's laws, model the read/write head using the following differential equation:

f‘F” ‘ (1rfﬂ

. F KO = Kii
dt= et H =55

Here,

+ .J is the inertia of the head assembly.

* (is the viscous damping coefficient of the bearings.
* I isthe return spring constant.

K is the motor torque constant.

* # is the angular position of the head.

* iisthe input current.

Taking the Laplace transform, the transfer function from i to # is

Design Hard-Disk Read/Write Head Controller

K;

His\= ————M—.
() Jet+ Os+ K

Specify the physical constants of the model, such that:

* J =001 kgm?
O =0.004 N /(rad/sec)

K =10 Nm/rad

o K; = 0.0 Nm/rad

J =0.01;
C = 0.004;
K = 10;

Ki = 0.05;

Define the transfer function using these constants.

num = Ki;
den = [J C K];
H = tf(num,den)
H:

0.05

0.01 s™2 + 0.004 s + 10

Continuous-time transfer function.

Discretize the Model

To design a digital controller that provides accurate positioning of the read/write head,

first discretize the continuous-time plant.

Specify the sample time.

Ts = 0.005;

12-133

12 ciassical Control Design

Discretize the model. Since the controller will have a digital-to-analog converter (with a
zero-order hold) connected to its input, use the c2d command with the 'zoh'
discretization method.

Hd

c2d(H,Ts, 'zoh")

Hd =

6.233e-05 z + 6.229e-05

272 - 1.973 z + 0,998
Sample time: 0.005 seconds
Discrete-time transfer function.

Compare the Bode plots of the continuous-time and discrete-time models.

bodeplot(H,'-"',Hd, " '--")
legend('Continuous-time', 'Discrete-time"')

12-134

Design Hard-Disk Read/Write Head Controller

Magnitude (dB)

Phase (deq)

o
o

-100

-150

w0
-

u
o
o

-270

10

Bode Diagram

-

Continuous-time
— — — Discrete-time

10 102 10%
Frequency (rad/s)

To analyze the discretized system, plot its step response.

stepplot(Hd)

12-135

12 Cciassical Control Design

Amplitude

12-136

0.01 T T

Step Response

0 5 10 15 20 25 30
Time (seconds)

The step response has significant oscillation, which is most likely due to light damping.
Check the damping for the open-loop poles of the system.

damp (Hd)
Pole Magnitude Damping Frequency Time Constant
(rad/seconds) (seconds)
9.87e-01 + 1.57e-011 9.99%e-01 6.32e-03 3.16e+01 5.00e+00
9.87e-01 - 1.57e-01i 9.99%e-01 6.32e-03 3.16e+01 5.00e+00

As expected, the poles have light equivalent damping and are near the unit circle.
Therefore, you must design a compensator that increases the damping in the system.

Design Hard-Disk Read/Write Head Controller

Imaginary Axis

Add a Compensator Gain

The simplest compensator is a gain factor with no poles or zeros. Try to select an
appropriate feedback gain using the root locus technique. The root locus plots the closed-
loop pole trajectories as a function of the feedback gain.

rlocus (Hd)

Root Locus

P
n

3
T

on
:

=i
T

o=
ot
T

—

i

]

e
T

i
=5
T

-7 -6 -5 -4 -3 -2 -1 0 1 2

Real Axis

The poles quickly leave the unit circle and go unstable. Therefore, you must introduce
some lead to the system.

Add a Lead Network

Define a lead compensator with a zero at «v = —{.53 and a pole at & = 0.

12-137

12 Cciassical Control Design

D(z) = -3

2+ b
D = zpk(0.85,0,1,Ts);

The corresponding open-loop model is the series connection of the compensator and
plant.

u —m=| Diz) {——m=| Hylz) —m= v

Compensator Plant

oloop = Hd*D

oloop =

6.2328e-05 (z+0.9993) (z-0.85)

z (z°2 - 1.973z + 0.998)

Sample time: 0.005 seconds
Discrete-time zero/pole/gain model.

To see how the lead compensator affects the open-loop frequency response, compare the
Bode plots of Hd and oloop.

bodeplot(Hd,'--"',oloop,'-")
legend('Plant', 'Plant plus lead compensator')

12-138

Design Hard-Disk Read/Write Head Controller

Magnitude (dB)

Bode Diagram

n
[

-100

T e o =

— — = Plant
Flant plus lead compensator

10’

Frequency (rad/s)

The compensator adds lead to the system, which shifts the phase response upward in the
frequency range w = 10,

Examine the behavior of the closed-loop system poles using a root locus plot. Set the
limits of both the x-axis and y-axis from -1 to 1.

rlocus(oloop)

zgrid
x1im(
ylim(

[-11]
[-11]

)
)

12-139

12 Cciassical Control Design

Root Locus

DE;‘TH

EIIE,.;'T ! .-T.'IT T

-\._.

0
e .
2 b TR L L
=
n
E-D.E
0.B7/T
I \u?,.n
0o ~~—_ 0.6xT AT
P I 08T e AL
4 08 06 04 02 0 02 04 06 08 1
Real Axis

The closed-loop poles now remain within the unit circle for some time.

To create a data marker for the plot, click the root locus curve. Find the point on the
curve where the damping is greatest by dragging the marker. The maximum damping of

0.782 corresponds to a feedback gain of 4.07e+03.

12-140

Design Hard-Disk Read/Write Head Controller

Imaginary Axis

Root Locus

0.67/T system:
D- 8‘ A

0.6

0.4

T e T T T
LT e

_ Gain: 4.07e+03
.77 Pole: 0.589+ 0.227i
© . Damping: 0.782
o | Overshoot (%): 1.95 |
T 7 Frequency (radls): 118

oloop

0201

e 0]

0.2 1]
Real Axis

Analyze Design

02

To analyze this design, first define the closed-loop system, which consists of the open-loop

system with a feedback gain of 4.07e+03.

12-141

12 ciassical Control Design

k = 4.07e+03;
cloop = feedback(oloop,k);

Plot the closed-loop step response.

stepplot(cloop)

12-142

Design Hard-Disk Read/Write Head Controller

Amplitude

104 Step Response

5 — . . .
25T iy

27 L _
1.5 .

‘I - -
0.5 y

E 1 1 1 1 1

0 0.02 0.04 0.06 0.08 0.1 0.12

Time (seconds)

This response depends on your closed-loop setpoint. The one shown here is relatively fast
and settles in about 0.06 seconds. Therefore, the closed-loop disk drive system has a seek
time of 0.06 seconds. While this seek time is relatively slow by modern standards, you
also started with a lightly-damped system.

It is good practice to examine the robustness of your design. To do so, compute the gain
and phase margins for your system. First, form the unity feedback open-loop system by
connecting the compensator, plant, and feedback gain in series.

olk = k*oloop;
Next, compute the margins for this open-loop model.

[Gm,Pm,Wcg,Wcp] = margin(olk)

12-143

12 Cciassical Control Design

Gm =

3.8360

Pm =

43.3068

Wecg =

296.7978

Wep =

105.4680
This command returns the gain margin, Gm, the phase margin Pm, and their respective
cross-over frequencies, Wcg and Wcp.

Convert the gain margin to dB.

20*10g10(Gm)

ans =

11.6775

You can also display the margins graphically.

margin(olk)

12-144

See Also

Magnitude (dB)

Phase (deq)

-180

270
Ik 10’ 102

Bode Diagram
Gm = 11.7 dB (at 297 rad/s), Pm = 43.3 deg (at 105 rad/s)

— ---'/I*m_

Frequency (rad/s)

This design is robust and can tolerate an 11-dB gain increase or a 40-degree phase lag in
the open-loop system without going unstable. By continuing this design process, you may
be able to find a compensator that stabilizes the open-loop system and reduces the seek

time further.

See Also
bodeplot | feedback | margin | rlocus

12-145

12 Cciassical Control Design

Design Compensator for Plant Model with Time Delays

12-146

This example shows how to design a compensator for a plant with time delays using
Control System Designer.

Analysis and Design of Feedback Systems with Time Delays

When working with time delay systems it is advantageous to work with analysis and
design tools that directly support time delays so that performance and stability can be
evaluated exactly. However, many control design techniques and algorithms cannot
directly handle time delays. A common workaround consists of replacing delays by their
Pade approximations (all-pass filters). Because this approximation is only valid at low
frequencies, it is important to choose the right approximation order and check the
approximation validity.

Control System Designer provides a variety of design and analysis tools. Some of these
tools support time delays exactly while others support time delays indirectly through
approximations. Use these tools to design compensators for your control system and
visualize the compromises made when using approximations.

Plant Model

For this example, which uses a unity feedback configuration, the plant model has a time
delay:

_ _-0.55_1
Gls)=e s+1

()2 o SRR N
s+1

iy
[a—

(=]

Create the plant model.
G = tf(1,[1,1], 'InputDelay',0.5);
Tools that Support Time Delays

In the app, the following tools support time delays directly:

Design Compensator for Plant Model with Time Delays

* Bode and Nichols Editors
* Time Response Plots
* Frequency Response Plots

Open Control System Designer, importing the plant model and using a Bode editor
configuration.

controlSystemDesigner({'bode'},G)

4\ Control System Designer - I0Transfer_r2y: step

[CONTROL SYSTEM

o B = B2 2 « 8
Open Save Edit Multimodel Tuning New Store Retrieve Compare Export Preferences
Session Session Configurat - Plot + -

FILE |

ARCHITECTURE | TUNING METHODS |ANALYSIS |

YEELED

DESIGNS

(o] & sl

|RESULTS | PREFEREMNCES |

Data Browser ® | Bode Editor for LoopTransfer C 1 | _J I0Transfer_r2y: step =% 1
w Controllers and Fixed Blocks
3 Bode Editor for LoopTransfer_C Step Response
C From: r To:y
0.6
G
H —-10
m
o
- © 0.5
w Designs S 20
=
o
= 0.4
= .
-30|G.M:116dB
Freq: 3.67 rad/s @
Stable loop 3
A0 % 0.3
w Responses =
LoopTransfer_C - =
I0Transfer_r2y -720 0.2
10Transfer_r2u = .
I0Transfer_duy | | 1440
I0Transfer_dy2y I
-2160 0.1
w Preview
-2880 | p.M.: -180 deg
Freq: 0 rad/s
-3600 0
10°2 1077 109 10! 102 0 0.5 1 15 2 25 3 35
Frequency (rad/s) Time (seconds)

12-147

12 ciassical Control Design

The phase response of the Bode plot shows the roll-off effect from the exact
representation of the delay. The beginning of the step response shows an exact
representation of the 0.5 second delay.

Open a Nyquist plot of the open-loop response. In the Data Browser, right-click
LoopTransfer C, and select Plot > nyquist.

4\ Control System Designer - LoopTransfer_C: nyquist

[CONTROL SYSTEM

(o] & sl
BEinlacl

E= @ IE
ood = & e~ @
Open Save Edit Multimodel Tuning New Store Retrieve Compare Export Preferences
Session Session Configurati - Plot = -
FILE ARCHITECTURE TUNING METHODS |AMALY SIS DESIGNS RESULTS |PREFERENCES
Data Browser @ | Bode Editor for LoopTransfer_C | | I0Transfer_r2y: step J LoopTransfer_C: nyquist L
w Controllers and Fixed Blocks
3 Bode Editor for LoopTransfer_C Nyquist Diagram
C From: uc To:uc
0.8
G
H —-10
m
=
: €
w Designs S 20
'
=]
@
=
30| G.M.:116dB @
Freq: 3.67 rad/s is
Stable loop | =
-40 g
w Responses 0 -@
LoopTransfer_C - e
10Transfer_r2y -720 -
10Transfer_r2u =
10Transfer_du2y | | 1440
I0Transfer_dy2y il
-2160
w Preview
-2880 s
Open-Loop Transfer Function P.M.: -180 deg
Name: LoopTIransfer C Freq: 0 rad/s -
oo - -3600 08
L“zzl“ns' 102 1071 10° 107 102 4 08 06 04 02 0 02
Frequency (rad/s) Real Axis

The Nyquist response wrapping around the origin in a spiral fashion is the result of the
exact representation of the time delay.

12-148

Design Compensator for Plant Model with Time Delays

Tools that Approximate Time Delays
In the app, the following tools approximate time delays:

* Root Locus Editor

* Pole/Zero Plots

* Many of the automated tuning methods

When using approximations, the results are not exact and depend on the validity of the

approximation. Each tool in Control System Designer provides a warning pane to indicate
when time-delays are approximated.

Open a root locus editor plot for the open-loop response. Click Tuning Methods, and
select Root Locus Editor. In the Select Response to Edit dialog box, click Plet.

12-149

12 classical Control Design

Data Browser

w Controllers and Fixed Blocks

E

C
G
H

w Designs

I0Transfer_r2y
10Transfer_r2u
I0Transfer_duy
I0Transfer_dy2y

* Responses

m

w Preview

Open-Loop Transfer Function
Hame: LoopTransfer C
Locations:

uc

Model time delays are approximated in the root locus plot. View or modify approximation settings here.

Imag Axis

\ i

Real Axis

5 10

The Root Locus Editor shows a notification that the plot is using a time delay
approximation. This notification can be minimized by clicking on the arrow icon to the

left.

12-150

Design Compensator for Plant Model with Time Delays

4\ Control System Designer - Root Locus Editor for LoopTransfer_C

ROOT LOCUS EDITOR

[CONTROL SYSTEM

+ =
o d = g L doe B
Open Save Edit Multimodel Tuning New Store Retrieve Compare Export Preferences
Session Session Configurati | - Plot -
FILE ARCHITECTURE TUNING METHODS |AMALY SIS DESIGNS RESULTS |PREFERENCES
Data Browser ® +1 | Root Locus Editor for LoopTransfer_C | I0Transfer_r2y: step 0 | LoopTransfer_C: nyquist 1 |
w Controllers and Fixed Blocks '-3::' Model time delays are approximated in the root locus plot. View or modify approximation settings here,
F
C
G
H o \) |
3+ J
w Designs
2+ J
1+ J
[}
=
<t
=0 e SRR 4
©
* Responses E
LoopTransfer_C - AT 1
I0Transfer_r2y
10Transfer_r2u = 2 1
I0Transfer_duy |
I0Transfer_dy2y il 3t J
w Preview
4t J
Open-Loop Transfer Function
Hame: LoopTransfer C))) .)
Locations: -5
e -20 -15 10 -5 0 5 10
Real Axis

Change Approximation Settings

To change the approximation settings, click the hyperlink in the notification. In the
Control System Designer Preferences dialog box, on the Time Delays tab, specify a Pade
order of 4. Alternatively, you can set the bandwidth over which you want the
approximation to be accurate.

12-151

12 ciassical Control Design

i 1

4\ Control Systern Designer Preferences E'@

Units | Time Delays | Stj.rlel Gptionsl Line Colors

Approximation

Specify the Pade approximation order for tools that do not support
systerns with delays.

@ Pade order: |4

(") Bandwidth of accuracy (rad/=): |10 (Pade order: 0)

| ok || cancel || Help || Apply |

The higher-order Pade approximation adds poles and zeros to the root locus plot.

12-152

See Also

Data Browser

+ Root Locus Editor for LoopTransfer C

I0Transfer_r2y: step 0

LoopTransfer_C: nyquist

w Controllers and Fixed Blocks

E

C
G
H

w Designs

I0Transfer_r2y
10Transfer_r2u
I0Transfer_duy
I0Transfer_dy2y

* Responses

w Preview

Open-Loop Transfer Function
Hame: LoopTransfer C
Locations:

uc

-
Model time delays are approximated in the root locus plot. View or modify approximation settings here.

Imag Axis

Real Axis

15

See Also

Control System Designer

12-153

12 Cciassical Control Design

Design Compensator for Systems Represented by
Frequency Response Data

12-154

This example shows how to design a compensator for a plant model defined by frequency
response data (FRD) using Control System Designer.

Acquire Frequency Response Data (FRD) Plant Model

Non-parametric representations of plant models, such as frequency response data, are
often used for analysis and control design. These FRD models are typically obtained from:

1) Signal analyzer hardware that performs frequency domain measurements on systems.

2) Non-parametric estimation techniques using the systems time response data. You can
use the following products to estimate FRD models:

Simulink® Control Design™:

* Function: frestimate

» Example: “Frequency Response Estimation Using Simulation-Based Techniques”
(Simulink Control Design).

Signal Processing Toolbox™:

* Function: tfestimate.

System Identification Toolbox™:

* Functions: etfe, spa, spafdr

FRD Model and Design Requirements

In this example, design an engine speed controller that actuates the engine throttle angle:

Reference Throttle Engine

Speed (RPM) Angle (deg)) Speed (RPM)
Compensator Engine >

Design Compensator for Systems Represented by Frequency Response Data

The frequency response of the engine is already estimated. Load and view the data.

load FRDPlantDemoData.mat
AnalyzerData

AnalyzerData = struct with fields:
Response: [594x1 doublel]

Frequency: [594x1 double]
FrequencyUnits: 'rad/s'

Create an FRD model object:

FRDPlant = frd(AnalyzerData.Response,AnalyzerData.Frequency,...
'Unit',AnalyzerData.FrequencyUnits);

The design requirements are:

» Zero steady-state error for step reference speed changes
» Phase margin greater than 60 degrees
* Gain margin greater than 20 dB.

Design Compensator

Open Control System Designer.

controlSystemDesigner({'bode', 'nichols'},FRDPlant) |

The Control System Designer opens with both Bode and Nichols open-loop editors.

12-155

12 ciassical Control Design

4\ Control System Designer - Bode Editor for LoopTransfer_C EI@
[CONTROL SYSTEM BODE EDITOR =
. &
o d = g L & &2 2
Open Save Edit Multimodel Tuning New Store Retrieve Compare Export Preferences
Session Session Configurati - Plot = -
FILE ARCHITECTURE TUNING METHODS |AMALY SIS DESIGNS RESULTS |PREFERENCES

Data Browser ® _J Bode Editor for LoopTransfer_C | Open-Loop Nichols Editor for LoopTransfer_C |

w Controllers and Fixed Blocks
3 Bode Editor for LoopTransfer_C Open-Loop Nichols Editor for LoopTransfer_C
60 60 T T T T T T T
C
6 50
H — 50
8 40
- [}
w Designs S 30 40
=
= 2 af
= S
10 |G.M.:-32.8dB (“B 05dB :
Freq: 9.74 rad/s d | . L) e
A g 2 StMdBT L g
] a FRY & i S
* Responses 0 - ; R SO B Lhd.,, :
LoopTransfer_C |- Q ‘ID': E . : BdB i adB-T
10Transfer_r2y N -45 o . Gh G d s B
10Transfer_r2u = 37 :
10Transfer_duy | B 20 1 i I~ JRE R PP S —~g-48]
I0Transfer_dy2y -3
o =E H S a : E ;
w Preview L AO Rl : % L _12'dgl
180 | .M. inf NS S G.M.:-32.8dB @ 9.74 rad/s
Freq: NaN HE P.M.: Inf @ MNaN
225 o b . " . L Ly
10° -360 -315 -270 -2256 -180 135 90 45 O
Frequency (rad/s) Open-Loop Phase (deg)
i) Edit Gain

You can design the compensator by shaping the open-loop frequency response in either
the Bode editor or Nichols editor. In these editors, interactively modify the gain, poles,
and zeros of the compensator.

To satisfy the tracking requirement of zero steady-state error, add an integrator to the
compensator. Right-click the Bode editor plot area, and select Add Pole/Zero >
Integrator.

To meet the gain and phase margin requirements, add a zero to the compensator. Right-
click the Bode editor plot area, and select Add Pole/Zero > Real Zero. Modify the

12-156

Design Compensator for Systems Represented by Frequency Response Data

location of the zero and the gain of the compensator until you satisfy the margin
requirements.

One possible design that satisfies the design requirements is:

_ 0.001(s +4)

C(s) S

This compensator design, which is a PI controller, achieves a 20.7 dB gain margin and a
70.8 degree phase margin.

4\ Control System Designer - Bode Editor for LoopTransfer_ C

BODE EDITOR

[CONTROL SYSTEM

08 = G B2 2 « 8
Open Save Edit Multimodel Tuning New Store Retrieve Compare Export Preferences
Session Session Configurat - Plot = -

FILE |

ARCHITECTURE

| TUNING METHODS |ANALYSIS |

DESIGNS

|RESULTS | PREFEREMNCES |

Data Browser

w Controllers and Fixed Blocks

® _J Bode Editor for LoopTransfer_C

A

|. Open-Loop Nichols Editer for LoopTransfer_C

E

Bode Editor for LoopTransfer_C

1 D.c.

Open-Loop Nichols Editor for LoopTransfer_C
40 T T T T T T T

30
C
G o 0dB
H
o
=8
- 2
w Designs £ _
=
=] —
5] [us]
= =
=
-20 | G.M.: 20.7 dB S
Freq: 6.89 rad/s - o
-30 S
* Responses a0 T':‘
LoopTransfer_C - 2
10Transfer_r2y @]
10Transfer_r2u E ;3; 135
I0Transfer_duy B
I0Transfer_dy2y -3
b
w Preview £ =l : S HERE
P.M.: 70.8 deg G.M.: 20.7 dB @ 6.89 rad/s
Freq: 1.29 rad/s : P.M.: 70.8 deg @ 1.29 rad/s
-225 apt i A s s

Open-Loop Phase (deg)

-360 -315 -270 -225 -180 -135 80 45 O

Frequency (rad/s)

i) Edit Gain

Export the designed compensator to the workspace. Click Export.

12-157

12 Cciassical Control Design

Validate the Design

Validate the controller performance by simulating the engine response using a nonlinear
model in Simulink®. For this example, the validation simulation results are in

EngineStepResponse.

Plot the response of the engine to a reference speed change from 2000 to 2500 RPM:

plot(EngineStepResponse.Time,EngineStepResponse.Speed)
title('Engine Step Response')

xlabel('Time (s)"')

ylabel('Engine Speed (RPM)"')

Engine Step Response
2600

2800

Engine Speed (RPM)
X R
= =]
T
\

R
2
=

T

200 |/

2000

12-158

See Also

The response shows zero steady-state error and well-behaved transients with the
following metrics.

stepinfo(EngineStepResponse.Speed,EngineStepResponse.Time)

ans = struct with fields:
RiseTime: 1.1048

SettlingTime: 1.7194
SettlingMin: 2.4501e+03
SettlingMax: 2.5078e+03

Overshoot: 0.3127
Undershoot: 0
Peak: 2.5078e+03
PeakTime: 2.3853
See Also

Control System Designer

12-159

12 ciassical Control Design

Design Internal Model Controller for Chemical Reactor
Plant

This example shows how to design a compensator in an IMC structure for series chemical
reactors, using Control System Designer. Model-based control systems are often used to
track setpoints and reject load disturbances in process control applications.

Plant Model

The plant for this example is a chemical reactor system, comprised of two well-mixed
tanks.

E- ¢ (_1 .-'!:D
F.C,
T—
vV
T v -
Y
V

The reactors are isothermal and the reaction in each reactor is first order on component
A:

12-160

Design Internal Model Controller for Chemical Reactor Plant

Material balance is applied to the system to generate a dynamic model of the system. The
tank levels are assumed to stay constant because of the overflow nozzle and hence there
is no level control involved.

For details about this plant, see Example 3.3 in Chapter 3 of "Process Control: Design
Processes and Control Systems for Dynamic Performance" by Thomas E. Marlin.

The following differential equations describe the component balances:

i,
A . F(Ca — Ca) = VECq
ot
1C 4o
1'-r A2 F(Ca Caz) — VEC 2
ot
At steady state,
dC Al 0
dt
dC 4o —0
it

the material balances are:
FY(Chw—Ch) = VkCy =0
F*Y(Ch —Cha) —VEkCyi =0
where €10, C.a1%, and Cli2* are steady-state values.

Substitute, the following design specifications and reactor parameters:

F* = 0.085 male /min
f
Cyo = 0,925 mol [min

V = 1.05m®

12-161

12 ciassical Control Design

12-162

k= 0.04 min~"
The resulting steady-state concentrations in the two reactors are:

CYy = KO = 0.6191mol/m?
O = K*C% = 0.4144mol /m?

where

e

K= FeivE

= [LGGOS

For this example, design a controller to maintain the outlet concentration of reactant from

the second reactor, {'r.-':;r, in the presence of any disturbance in feed concentration, C.4.
The manipulated variable is the molar flowrate of the reactant, F, entering the first
reactor.

Linear Plant Models

In this control design problem, the plant model is

F(s)

{'"_.‘-; [.‘i':l

and the disturbance model is

'r.l_.|||| |: .‘il]
Caals)

This chemical process can be represented using the following block diagram:

Design Internal Model Controller for Chemical Reactor Plant

CA!
> :@ e
where

. — Cmls) _ 06693

TAl = (-_.:r__i'](.‘i} a 8.26??5 +1

o - Cals) 24087

TTUF(s) T 826775+ 1

G = Saal®) _ _0.6693

Cals) 8.2677s+1

12-163

12 Cciassical Control Design

12-164

 Cals) 1.6118
= F(s) B2677s+ 1

Based on the block diagram, obtain the plant and disturbance models as follows:

Cyals) 13.3259s + 3.2230
—— = GG g+ G

F(s) pmAR TR T TR 267Ts + 1)2
Ca , 0.4480

,-L} =G Gz = o DRTT . 1 1470
C A [3.1(}1 s LI-

Create the plant model at the command line:

s = tf('s");

Gl = (13.3259*s+3.2239)/(8.2677*s+1)"2;
G2 = G1;

Gd = 0.4480/(8.2677*s+1)"2;

G1 is the real plant used in controller evaluation. G2 is an approximation of the real plant
and it is used as the predictive model in the IMC structure. G2 = G1 means that there is
no model mismatch. Gd is the disturbance model.

Define IMC Structure in Control System Designer
Open Control System Designer.

controlSystemDesigner

Design Internal Model Controller for Chemical Reactor Plant

4\ Control System Designer - I0Transfer_r2y: step

[CONTROL SYSTEM

= FE
o H = g = = 0« 8
Open Save Edit Multimodel Tuning New Store Retrieve Compare Export Preferences
i i Configurati - Plot = -
FILE | ARCHITECTURE | TUNING METHODS |ANALYSIS | DESIGNS |RESULTS |PREFERENGCES |

Data Browser

w Controllers and Fixed Blocks

® | Bode Editor for LoopTransfer C |

3 Bode Editor for LoopTransfer_C
1
C
G 0.5
7]
H — 0.5 =
ol 2 0
) =
w Designs o =
= 0
= 05
=
=]
@
= -1
0.5 | G.M.:inf -1 0.5 0 0.5 1
Freq: NaN "
Real Axis
Stable loop .
-1 10Transfer_rdy: step %
* Responses 1 Step Response
LoopTransfer_C = From: r To: y
I0Transfer_r2y 05 19
10Transfer_r2u = § '
10Transfer_du2y = 1
I0Transfer_dy2y I E;,‘ 0 g
@ 2
w Preview s 05 é_ 0.5
P.M.: -180 deg <
Freq: 0 rad/s 0
-1
10" 10°
05
Frequency (rad/s) 0 02 04 06 08 1

Root Locus Editor for LoopTransfer C 2 |
Root Locus Editor for LoopTransfer_C
1

Select the IMC control architecture. In Control System Designer, click Edit
Architecture. In the Edit Architecture dialog box, select Configuration 5.

12-165

12 Cciassical Control Design

Edit Architecture - Configuration 5

Select d'}"
Control Architecture: > Gd

du

“S®Or
r = e ”_.é}_.c 4G :é J

—-T-@}_ Blocks | Loop Signs
Identifier Block Hame Walue
e | mame | &
F [F | |<1x1 zpk> |
G1 |G1 | |<1x ss> | &
G2 G2 | |<1xt ss= 'S
Gd |Gd | |<1xt ss= 'S

| ok || cancel || Help]

Load the system data. For G1, G2, and Gd, specify a model Value.

12-166

Design Internal Model Controller for Chemical Reactor Plant

Edit Architecture - Configuration 5

Select
Control Architecture: dL. Gd
du
[+ u /l\
r - ”_.é}_.c G1 o+
= E ym

el {62 .

ldentifier Block Mame Value
TS | c | mame | &

F [F | |<1x1 zpk> |

G Gl | & | 2

G2 G2 | G2 | db

Gd |Gd | |G |

| ok || cancel || Help |

Tune Compensator

Plot the open-loop step response of G1.

step(Gl)

12-167

12 Cciassical Control Design

3.5

2.5

3

Amplitude
o

0.5

0 10 20 30 40 50 60 70 80 00 100
Time (seconds)

Right-click the plot and select Characteristics > Rise Time submenu. Click the blue rise
time marker.

Step Response

3_ 5 T T T 1
............................. System: G1
3 Rise time (seconds): 25 .4
I
|
25

12-168

Design Internal Model Controller for Chemical Reactor Plant

The rise time is about 25 seconds and we want to tune the IMC compensator to achieve a
faster closed-loop response time.

To tune the IMC compensator, in Control System Designer, click Tuning Methods, and
select Internal Model Control (IMC) Tuning.

Internal Meodel Contrel (IMC) Tuning X
Compensator

w_ Select Loop to Tune

|LoopTransfer_C '|

| Add New Loop... |

Specifications

Dominant closed-loop time constant: |2.146322632599?B |

Dezired controller order: f @ (3 |
3

Update Compensator ” Help]

Select a Dominant closed-loop time constant of 2 and a Desired controller order of
2.

12-169

12 Cciassical Control Design

12-170

Internal Model Control (IMC) Tuning
Compensator

Cw=| = 0310MEx

[1+17s + (8.35)2)

(1+4.18) (1 +2s)

w_ Select Loop to Tune

| LoopTransfer_C - |

[Add new loop ...]

Specifications

Dominant closed-loop time constant: |2 |

Dezired controller order: ' . E: |

| Update Compensator |’ Help]

To view the closed-loop step response, in Control System Designer, double-click the
IOTransfer _r2y:step plot tab.

Design Internal Model Controller for Chemical Reactor Plant

4\ Control System Designer - I0Transfer_r2y: step

[CONTROL SYSTEM

|
i T = << S R e E e @
Open Save Edit Multimodel Tuning New Store Retrieve Compare Export Preferences
n 5 N Archiech Config : - Plot -
FILE ARCHITECTURE TUNING METHODS |AMALY SIS DESIGNS RESULTS |PREFERENCES
Data Browser ® | Bode Editor for LoopTransfer_C | Root Locus Editor for LoopTransfer_C | 10Transfer_r2y: step |

w Controllers and Fixed Blocks

E

Step Response

C 1 From: r To: y

al T T T T T T T

G2

Gd 0.9 1
w Designs 0.8)

0.7

<o
(=]

=
o

* Responses

Amplitude

LoopTransfer_C
I0Transfer_r2y
10Transfer_r2u

o
s

o
w

<o
%]

» Preview
0.1

0 2 4 6 8 10 12 14 16 18
Time (seconds)

i) Compensator tuned using IMC tuning.

Control Performance with Model Mismatch

When designing the controller, we assumed G1 was equal to G2. In practice, they are
often different, and the controller needs to be robust enough to track setpoints and reject
disturbances.

Create model mismatches between G1 and G2 and examine the control performance at
the MATLAB command line in the presence of both setpoint change and load disturbance.

Export the IMC Compensator to the MATLAB workspace. Click Export. In the Export
Model dialog box, select compensator model C.

12-171

12 ciassical Control Design

Export Model »

Select Design: |Eurrent Design v|

~ Export models to MATLAB Workspace
Export Models Export as
F F -
|
Gl Gl 3
G2 G2 |
Gd Gd
[M o S LomnTeancfor Sl

|. Expurt] | Can u:el] |Elp|

Click Export.

Convert the IMC structure to a classic feedback control structure with the controller in
the feedforward path and unit feedback.

C = zpk([-0.121 -0.121],[-0.242, -0.466],2.39);
C new = feedback(C,G2,+1)

2.39 (s+0.121)"4

(s-0.0001594) (s+0.121) (s+0.1213) (s+0.2419)

Continuous-time zero/pole/gain model.

Define the following plant models:
* No Model Mismatch:

Glp = (13.3259*5+3.2239)/(8.2677*s+1)"2;

12-172

Design Internal Model Controller for Chemical Reactor Plant

* Gl time constant changed by 5%:
Glt = (13.3259*s+3.2239)/(8.7*s+1)"2;
* Gl gain is increased by 3 times:

Glg = 3*(13.3259*%s+3.2239)/(8.2677*s+1)"2;

Evaluate the setpoint tracking performance.

step(feedback(Glp*C new, 1), feedback(G1lt*C new,1), feedback(Glg*C new,1))

legend('No Model Mismatch', 'Mismatch in Time Constant', 'Mismatch in Gain')

Step Response

Mo Model Mismatch

— Mismatch in Gain

Mismatch in Time Constant

[p] s}

Amplitude

=
i

0.27

0 2 4 6 8 10 12 14 16
Time (seconds)

Evaluate the disturbance rejection performance.

20

12-173

12 Cciassical Control Design

step(Gd*feedback(1l,G1lp*C new),Gd*feedback(1l,Glt*C new),bGd*feedback(1l,G1lg*C new))
legend('No Model Mismatch', 'Mismatch in Time Constant', 'Mismatch in Gain')

Step Response

0.045 T T

Mo Model Mismatch
Mismatch in Time Constant
Mismatch in Gain

0.04

Amplitude

0 20 40 60 80 100 120
Time (seconds)

The controller is fairly robust to uncertainties in the plant parameters.

See Also

Control System Designer

More About
. “Design Compensator Using Automated Tuning Methods” on page 12-100

12-174

Design LQG Tracker Using Control System Designer

Design LQG Tracker Using Control System Designer

This example shows how to use LQG synthesis to design a feedback controller for a disk
drive read/write head using Control System Designer.

For details about the system and model, see Chapter 14 of "Digital Control of Dynamic
Systems," by Franklin, Powell, and Workman.

Disk Drive Model

Below is a picture of the system to be modeled.

Disk Platen - Read”Nrite Head

12-175

12 ciassical Control Design

12-176

The model input is the current driving the voice coil motor, and the output is the position
error signal (PES, in % of track width). To learn more about the 10th order model, see
“Digital Servo Control of a Hard-Disk Drive”. The plant includes a small time delay. For
the purpose of this example, ignore this delay.

load diskdemo
Gr = tf(1le6,[1 12.5 0]);

Gfl tf(wl*[al bl*wl],[1 2*z1*wl wl™2] % first resonance
Gf2 tf(w2*[a2 b2*w2],[1 2*z2*w2 w2"2] % second resonance
Gf3 % third resonance

fourth resonance

);
);
tf(w3*[a3 b3*w3],[1 2*z3*w3 w3"2]);
);
onvert to state space for accuracy

Gf4 = tf(wd*[ad bd*wd],[1 2*z4*wd wi"2]
G = (ss(Gfl)+Gf2+Gf3+Gf4) * Gr; % C

Design Overview

In this example, design a full-ordered LQG tracker, which places the read/write head at
the correct position. Tune the LQG tracker to achieve specific performance requirements
and reduce the controller order as much as possible. For example, turn the LQG tracker
into a PI controller format.

Open Control System Designer
Open Control System Designer, importing the plant model.
controlSystemDesigner(G)

By default, Control System Designer displays the step response of the closed-loop system
along with Bode and root locus graphical editors for the open-loop response.

Maximize the step response. Double-click the IOTransfer _r2y: step plot tab. Details
about how to use the Control System Designer are described in “Getting Started with the
Control System Designer”.

Design LQG Tracker Using Control System Designer

(o] & sl

4\ Control System Designer - I0Transfer_r2y: step

[CONTROL SYSTEM VWEELBELS
P =
o d =) L 2 @
Open Save Edit Multimodel Tuning New Store Retrieve Compare Export Preferences
Session Session Configurat v Potw -
FILE ARCHITECTURE TUNING METHODS |AMALY SIS DESIGNS RESULTS |PREFERENCES
Data Browser ® | Bode Editor for LoopTransfer C ¢ | Root Locus Editor for LoopTransfer C 0| IOTransfer_r2y: step |

w Controllers and Fixed Blocks

F Step Response
C ; From: r To: y
6 T T T T T
H
1.8 .
w Designs 16)
1.4 4
1.2 .
@
=]
=
= 1
[=%
* Responses £
LoopTransfer_C - < 0.8 .
I0Transfer_r2y |
10Transfer_r2u = 0.6 il
I0Transfer_duy | '
I0Transfer_dy2y il 0.4]
w Preview
0.2 7
0 I I I I I
0 0.2 04 06 0.8 1 12

Time (seconds)

The default unity gain compensator produces a stable closed-loop system with large
oscillations.

Design a Full-Order LQG Tracker

Click Tuning Methods, and select LQG Synthesis.

12-177

12 Cciassical Control Design

4\ Control System Designer - I0Transfer_r2y: step

(o] & sl

[conmoL svsem TP
" =
o 3 = g o s @
Open Save Edit Multimodel Tuning New Store Retrieve Compare Export Preferences
Session Session Configs i - Plot = -
FILE ARCHITECTURE N GRAPHICAL TUNING
Data Browser ® | OTransfer_r2y: step |
z T P — :"(\9\,_ Bode Editor
N LT I T T ocks _\\Qv Edit feedback loop using Bode plot
F
C :"(\9\,_ Closed-Loop Bode Editor @ @ @ IE‘
G 3\9' Edit closed loop using Bode plot T
H ﬁ Root Locus Editor u
'\} Edit compensators using root locus plot
w Designs 7@ Nichols Editor 7
T Edit feedback loop using Michals plot
AUTOMATED TUNING)
PID PID Tuning i
Tune PID compensator using robust response time or classical methods
e Optimi; Based Tuning
* Responses . : Optimize compensator parameters to satisfy design requirements
LoopTransfer_C - LQG Synthesi -
— T ynthesis
10Transfer_r2y fz Qzdt Obtain feedback compensator using Linear-Quadratic-Gaussian design
10Transfer_r2u = il
I0Transfer_duy | \ Loop Shaping
10Transfer_dy2y il Find feedback compensator to match specified open-loop shape 1
» Preview IMC Internal Model Control IMC) Tuning
Obtain feedback compensator using IMC design 4
T
.
0 0.2 0.4 0.6 0.8 1 12
Time (seconds)

In the LQG Synthesis dialog box, in the Specifications section, set requirements on the

controller performance:

Controller response - Specify the controller transient behavior. You can make the
controller more aggressive at disturbance rejection or more robust against plant
uncertainty. If you believe your model is accurate and that the manipulated variable
has a large enough range, an aggressive controller is preferable.

Measurement noise - Specify an estimate of the level of output measurement noise
for your application. To produce a more robust controller, specify a larger noise
estimate.

12-178

Design LQG Tracker Using Control System Designer

Desired controller order - Specify your controller order preference.

Use default slider settings as the initial controller design.

Specifications

Controller response: : : ¥ : {
Aggressive Robust
Measurement noise: : : ' : {
Sma Large
Desired controller order: | g g g g 8 11 |
1 11
Update Compensator] ’ Help]

Click Update Compensator. The new Compensator is displayed, and the step response
updates.

12-179

12 Cciassical Control Design

4\ Control System Designer - I0Transfer_r2y: step EI@

[CONTROL SYSTEM @@ﬁi%ﬁ
ooa o= €& o &8 @

Open Save Edit Multimodel Tuning New Store Retrieve Compare Export Preferences
Session Session Configs i - Plot = -
FILE | ARCHITECTURE | TUNING METHODS |ANALYSIS | DESIGNS |RESULTS |PREFERENCES |
Data Browser ® | Bode Editor for LoopTransfer C ¢ | Root Locus Editor for LoopTransfer C | IOTransfer_r2y: step 1 |
w Controllers and Fixed Blocks
F Step Response
C 14 From: r To: y ®®@E|
G c T T T T T
H
121
w Designs

o
=
T

* Responses

LoopTransfer_C
I0Transfer_r2y
10Transfer_r2u
I0Transfer_duy
I0Transfer_dy2y

Amplitude
o
(=]

»

m

w Preview 0.2

0 0.002 0.004 0.006 0.008 0.01 0.012
Time (seconds)

i) Compensator tuned using LQG synthesis.

To design a more aggressive controller, move the Controller response slider to the far
left. The more aggressive controller reduces the overshoot by 50% and reduces the
settling time by 70%.

12-180

Design LQG Tracker Using Control System Designer

4\ Control System Designer - I0Transfer_r2y: step

[CONTROL SYSTEM

(o] & sl

vELs Sl

i o
o d = g L & @
Open Save Edit Multimodel Tuning New Store Retrieve Compare Export Preferences
Session Session Configurati - Plot = -
FILE ARCHITECTURE TUNING METHODS |AMALY SIS DESIGNS RESULTS |PREFERENCES
Data Browser ® | Bode Editor for LoopTransfer C ¢ | Root Locus Editor for LoopTransfer C 0| IOTransfer_r2y: step |
w Controllers and Fixed Blocks
F Step Response
C From: r To: y
1.4 r r - r
G
H
12
w Designs

* Responses

LoopTransfer_C
I0Transfer_r2y
10Transfer_r2u
I0Transfer_duy
I0Transfer_dy2y

»

m

w Preview

Amplitude
o o
(=] =]

0.4

0.2

05

1 15
Time (seconds)

P 25
<1073

i) Compensator tuned using LQG synthesis.

Design a Reduced-Order LQG Tracker

To create a PI controller, reset the Controller response slider to the middle default
value, and set the Desired controller order to 1.

12-181

12 ciassical Control Design

Specifications

Controller response: = T

Measurement noise:

Desired controller order: @
1

Update Compensator |’ Help]

Click Update Compensator.

12-182

Design LQG Tracker Using Control System Designer

4\ Control System Designer - I0Transfer_r2y: step | = | [5f 2 |
- =
CONTROL SYSTEM VIEW r;;'., =) &
=] IE
J ﬁ @ e LELE i -, = Ig @
Open Save Edit Multimodel Tuning New Store Retrieve Compare Export Preferences
. = Configurati Methods « Plot « -
FILE | ARCHITECTURE |TLINING METHODS |.kNALYSI5 | DESIGNS |RESULT5 |PREFERENCES —
Data Browser ® | Bode Editor for LoopTransfer C % | Root Locus Editor for LoopTransfer € 3| IOTransfer_r2y: step 1 |
w Controllers
F Step Response
C From: r To: y @@@E‘
2 T T T T T
1.8 .
w Designs 16)
1.4 -
1.2 .
@
=]
=
= 1
[=%
* Responses £
LoopTransfer_C - < 0.8 .
I0Transfer_r2y
10Transfer_r2u = 0.6 il
I0Transfer_duy B
10Transfer_dy2
_dyey - 0.4 4
w Preview
0.2 7
0 I I I I I
0 02 04 06 0.8 1 12
Time (seconds)
i) Compensator tuned using LQG synthesis.

This controller produces a heavily oscillating closed-loop system. To make the controller
less aggressive, move the Controller response slider to the right.

12-183

12 ciassical Control Design

Specifications

Controller rezponse: : : [* l
Goressive Robust
Measurement noize: : [~ i {
Sma Large
Desired controller order: @ { [1 |
1 11
Update Compensator | ’ Help]

Click Update Compensator.

12-184

See Also

4\ Control System Designer - I0Transfer_r2y: step

(o] & sl

[CONTROL SYSTEM

vELs Sl

P =
0 E o wm) - & @
Open Save Edit Multimodel Tuning New Store Retrieve Compare Export Preferences
Session Session Configurat - Plot = -
FILE ARCHITECTURE TUNING METHODS |AMALY SIS DESIGNS RESULTS |PREFERENCES
Data Browser ® | Bode Editor for LoopTransfer C ¢ | Root Locus Editor for LoopTransfer C 0| IOTransfer_r2y: step |

w Controllers and Fixed Blocks

F Step Response
C From: r To: y
16 : : — . .
G
H
141 7
w Designs
121 .
T T T T P T Y AT T N T e I
@
=]
=
S 08 .
* Responses £
LoopTransfer_C - =
I0Transfer_r2y 0.6 1 1
10Transfer_r2u =
I0Transfer_duy | 04k i
I0Transfer_dy2y il '
w Preview oz | 4
0 I I I I I
0 02 0.4 06 0.8 1 12
Time (seconds)

i) Compensator tuned using LQG synthesis.

The step response shows that the PI controller design provides a good starting point for
optimization-based design. For more information, see “Getting Started with the Control
System Designer”.

See Also

Control System Designer

12-185

12 Cciassical Control Design

More About
. “Design Compensator Using Automated Tuning Methods” on page 12-100

12-186

Export Design to MATLAB Workspace

Export Design to MATLAB Workspace

After designing your controller in Control System Designer, you can export your design
to the MATLAB Workspace for further analysis or design.

To export your design:

1 In Control System Designer, on the Control System tab, under Export, click
Export tuned blocks.

4\ Control Systermn Designer - Bode Editor for LoopTransfer_C

CONTROL SYSTEM BODE EDITOR

A 155 H O ® E

g d = o ~ ©

Open Save Edit KMultimodel Tuning New Store Retrieve Compare Preferences
Session Session Architecture = Configuration Methods Plot - -

FILE ARCHITECTURE TUMING METHODS |ANALYSIS DESIGMNS
= Export tuned blocks.

Data Browser ® Bode Editor for LoopTransfer_C & Export tuned block [:}

w Controllers and Fixed Blocks values to MATLAB waorkspace.

Bode Editor for LoopTransfer_C I~

F 10 Create Simulink model.
C G.M.:10.4 dB Create a Simulink model
G Freq: Inf rad/s with tuned block values, \
H =
.—-_--—
<L I
om0

2 In the Export Model dialog box, in the Select Design drop-down list, choose the
design that you want to export. You can select either the Current Design or one of
the stored designs from the Data Browser.

12-187

12 ciassical Control Design

12-188

Expo VIodE

Select Design: |Current Design vl

Export models to MATLAB Workspace

Export Models Export as
F F ~
C C
] G G
] H H
] LoocpTransfer_C LoocpTransfer_C
1 I\ Temncfar +3 L Tenmrfor el =

Export| |Cancel| |Help

In the Export models to MATLAB Workspace table, in the Export column, select
the models you want to export.

For all designs, you can export the controller and prefilter models. Also, for the
Current Design, you can export the fixed block models and any responses from the
Data Browser.

For more information on the prefilter, controller, and fixed blocks in each control
architecture, see “Feedback Control Architectures” on page 12-21.

In the Export as column, you can specify an alternate name for the exported model.
Exporting a model with the same name as an existing variable in the MATLAB
Workspace overwrites the variable.

To save the selected models to the MATLAB Workspace, click Export.

See Also

Apps
Control System Designer

See Also

More About

. “Feedback Control Architectures” on page 12-21
. “Generate Simulink Model for Control Architecture” on page 12-190

12-189

12 ciassical Control Design

Generate Simulink Model for Control Architecture

After designing your controllers in Control System Designer, to simulate your system,
you can automatically generate a Simulink model for your control architecture.

To do so, on the Control System tab, under Export, click Create Simulink model.

4\ Control System Designer - Bode Editor for LoopTransfer_C

CONTROL S¥STEM BO OR H ﬂg) 4
i =
a3 = = @
Open Save [Edit Multtimode! Tuning Newr Store Retrieve Compare Preferences
Session Session Architecture = Configuration Methods Plot -
FILE ARCHITECTURE TUNING METHODS |ANALYSIS DESIGHNS
Export tuned blocks.

12-190

Diata Browser O] J’ Bode Editor for LoopTransfer_C E Export tuned block ansf
w Controllers and Fixed Blocks values to MATLAE workspace. ¢
F Bode Editor for LoopTransfer_C - =

-10 Create Simulink model.
c G.M.: 10.4 dB Create a Simulink model %
G Freq: Inf rad/s with tuned block values.)
H-.______...——— 0l | & \

The app exports the controllers and fixed blocks for the current design to the MATLAB
Workspace and generates a Simulink model that matches the current control
architecture. For more information on the controllers and fixed blocks in each control
architecture, see “Feedback Control Architectures” on page 12-21.

For example, if you design a control system using configuration 1, Control System
Designer exports C, F, G, and H to the MATLAB Workspace and generates the following

Simulink model.

See Also

oooo .
] _.', F |+ . . . 5 .
_ u ¥
Input Feed Foreard
Compansator Plant Cutput
H -

Sensor Dynamics

In the generated model, the Input block is a Signal Generator. Using this block, you
simulate your model with different input waveforms, such as sine waves or random
signals. To generate a step response, replace the Input block with a Step block.

To generate a Simulink model for a stored design, first make that design current. On the
Control System tab, under Retrieve, select the design for which you want to generate a
model.

See Also

Control System Designer

More About
. “Feedback Control Architectures” on page 12-21
. “Export Design to MATLAB Workspace” on page 12-187

12-191

12 ciassical Control Design

Tune Simulink Blocks Using Compensator Editor

Reference

Reference Filter PID Controller

W4 10 Outt
+ Throttle Ang. -
ET Q_. e - ’ c
Speed 3 T4

This example shows how to tune Simulink® blocks using the Compensator Editor dialog
box in Control System Designer.

Open the Model

This example uses a model of a speed control system for a sparking ignition engine. The
initial compensator has been designed in a fashion similar to the method shown in “Single
Loop Feedback/Prefilter Compensator Design” (Simulink Control Design).

Open and explore the engine speed control model.

open_system('scdspeedctrl')

Air charge | Air charge
Engne Speed, N Air Charge | Air Charge

s Torque Teng

Thraottle & Manifold 1
Induction to N N | 300 @
Power Stroke Delay Dutput

aad radis

to rpm
Load Vehicle
Dynamics

Drag Torque

External Disturbance

h

Outpat

Diouble click to open
Cantrol System Designer

12-192

Copyright 2004-2016 The MathWaorks, Inc.

Introduction

This example uses the Compensator Editor to tune Simulink blocks. When tuning a
block in Simulink using Control System Designer, you can tune the block parameters
directly or you can tune a zero-pole-gain representation of the block. For example, in the
speed control example there is a PID controller with filtered derivative
scdspeedctrl/PID Controller:

Tune Simulink Blocks Using Compensator Editor

-
Block Parameters: PID Controller g

FID Controller

This block implements continuous- and discrete-time PID control algorithms and includes advanced features such as

anti-windup, external reset, and signal tracking. You can tune the PID gains automatically using the Tune...' button
(requires Simulink Control Design).

Controller: [PID vl Form: [Parallel -
Time domain:

@ Continuous-time

) Discrete-time

Main | PID Advanced | Data Types | State Attributes
Controller parameters

Source: [intemal = | E Compensator formula
Proportional (P): 0.0012191
Integral (I): 0.0030038
1 N
Derivative (D): 0 P+I=+D i
erivative (D): s 1+ N
]
Filter coefficient (M): 100
Tune

I